Abstract
We propose a new XOR-based (k,n) threshold secret SSS, where the secret is a binary string and only XOR operations are used to make shares and recover the secret. Moreover, it is easy to extend our scheme to a multi-secret sharing scheme. When k is closer to n, the computation costs are much lower than existing XOR-based schemes in both distribution and recovery phases. In our scheme, using more shares (≥ k) will accelerate the recovery speed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory 29(2), 208–210 (1983)
Bai., L.: A strong ramp secret sharing scheme using matrix projection. In: Proceedings of the 2006 International Symposium on a World of Wireless, pp. 652–656 (2006)
Benaloh, J.C., Leichter, J.: Generalized Secret Sharing and Monotone Functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)
Blakley, G., Kabatianski, G.: Ideal perfect threshold schemes and mds codes. p. 488
Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979 National Computer Conference, AFIPS, pp. 313–317 (1979)
Desmedt, Y.G., Frankel, Y.: Perfect homomorphic zero-knowledge threshold schemes over any finite abelian group. SIAM J. Discret. Math. 7(4), 667–679 (1994)
Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures. In: Proceedings of the IEEE Global Communication Conference, pp. 99–102
Kapoor, H., Huang, D.: Secret-sharing based secure communication protocols for passive rfids. In: Global Telecommunications Conference, GLOBECOM 2009, pp. 1–6. IEEE, Los Alamitos (2009)
Karnin, E.D., Member, S., Greene, J.W., Member, S., Hellman, M.E.: On secret sharing systems. IEEE Transactions on Information Theory 29, 35–41 (1983)
Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008)
Langheinrich, M., Marti, R.: Practical minimalist cryptography for rfid privacy. IEEE Systems Journal, Special Issue on RFID Technology 1(2), 115–128 (2007)
Chien, H.Y., Jan, J.K., Teng, Y.M.: A practical (t,n) multi-secret sharing scheme. IEICE Trans. on Fundamentals 12, 2762–2765 (2000)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)
Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)
Shamir, A.: How to share a secret? Communication of the ACM 22, 612–613 (1979)
Wu, T., He, W.: A geometric approach for sharing secrets. Computers and Security 14(11), 135–145 (1995)
Yamamoto, H.: Secret sharing system using (k, l, n) threshold scheme. Electronics and Communications in Japan (Part I: Communications) 69, 46–54 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lv, C., Jia, X., Lin, J., Jing, J., Tian, L., Sun, M. (2011). Efficient Secret Sharing Schemes. In: Park, J.J., Lopez, J., Yeo, SS., Shon, T., Taniar, D. (eds) Secure and Trust Computing, Data Management and Applications. STA 2011. Communications in Computer and Information Science, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22339-6_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-22339-6_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22338-9
Online ISBN: 978-3-642-22339-6
eBook Packages: Computer ScienceComputer Science (R0)