Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Abstract

We propose a new XOR-based (k,n) threshold secret SSS, where the secret is a binary string and only XOR operations are used to make shares and recover the secret. Moreover, it is easy to extend our scheme to a multi-secret sharing scheme. When k is closer to n, the computation costs are much lower than existing XOR-based schemes in both distribution and recovery phases. In our scheme, using more shares (≥ k) will accelerate the recovery speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory 29(2), 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  2. Bai., L.: A strong ramp secret sharing scheme using matrix projection. In: Proceedings of the 2006 International Symposium on a World of Wireless, pp. 652–656 (2006)

    Google Scholar 

  3. Benaloh, J.C., Leichter, J.: Generalized Secret Sharing and Monotone Functions. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  4. Blakley, G., Kabatianski, G.: Ideal perfect threshold schemes and mds codes. p. 488

    Google Scholar 

  5. Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979 National Computer Conference, AFIPS, pp. 313–317 (1979)

    Google Scholar 

  6. Desmedt, Y.G., Frankel, Y.: Perfect homomorphic zero-knowledge threshold schemes over any finite abelian group. SIAM J. Discret. Math. 7(4), 667–679 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures. In: Proceedings of the IEEE Global Communication Conference, pp. 99–102

    Google Scholar 

  8. Kapoor, H., Huang, D.: Secret-sharing based secure communication protocols for passive rfids. In: Global Telecommunications Conference, GLOBECOM 2009, pp. 1–6. IEEE, Los Alamitos (2009)

    Google Scholar 

  9. Karnin, E.D., Member, S., Greene, J.W., Member, S., Hellman, M.E.: On secret sharing systems. IEEE Transactions on Information Theory 29, 35–41 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k,n)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  11. Langheinrich, M., Marti, R.: Practical minimalist cryptography for rfid privacy. IEEE Systems Journal, Special Issue on RFID Technology 1(2), 115–128 (2007)

    Google Scholar 

  12. Chien, H.Y., Jan, J.K., Teng, Y.M.: A practical (t,n) multi-secret sharing scheme. IEICE Trans. on Fundamentals 12, 2762–2765 (2000)

    Google Scholar 

  13. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977)

    MATH  Google Scholar 

  14. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian International Workshop on Information Theory, pp. 276–279 (1993)

    Google Scholar 

  15. Shamir, A.: How to share a secret? Communication of the ACM 22, 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, T., He, W.: A geometric approach for sharing secrets. Computers and Security 14(11), 135–145 (1995)

    Google Scholar 

  17. Yamamoto, H.: Secret sharing system using (k, l, n) threshold scheme. Electronics and Communications in Japan (Part I: Communications) 69, 46–54 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lv, C., Jia, X., Lin, J., Jing, J., Tian, L., Sun, M. (2011). Efficient Secret Sharing Schemes. In: Park, J.J., Lopez, J., Yeo, SS., Shon, T., Taniar, D. (eds) Secure and Trust Computing, Data Management and Applications. STA 2011. Communications in Computer and Information Science, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22339-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22339-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22338-9

  • Online ISBN: 978-3-642-22339-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics