Abstract
Developing the concept of crossing sequences for multitape computations proposed in 1979 by G. Wechsung, we derive new relations among complexity measures for nondeterministic multitape computations. Especially, we characterize inherent relations between nondeterministic time and space and other complexity measures related to the notion of crossing sequences. We also show a nondeterministic simulation of nondeterministic computations whose complexity depends on the length of crossing sequences of the simulated machine. To a certain extent our results mirror classical results known to hold for single-tape computations or for deterministic multitape computations.
This research was carried out within the institutional research plan AV0Z10300504 and partially supported by the GA ČR grant No. P202/10/1333.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading (1974)
Book, R.V., Greibach, S.A., Wegbreit, B.: Time and tape bounded Turing acceptors and AFL’s. J. Comput. Syst. Sci. 4, 606–621 (1970)
Hartmanis, J.: Computational Complexity of One-Tape Turing Machine Computations. JACM 15(2), 325–339 (1968)
Hennie, F.C.: One-tape, off-line Turing machine computations. Information and Control 8, 553–578 (1965)
Hopcroft, J.E., Paul, W.J., Valiant, L.G.: On Time Versus Space. J. ACM 24(2), 332–337 (1977)
Ibarra, O.H., Moran, D.: Some Time-Space Tradeoff Results Concerning Single-Tape and Offline TM’s. SIAM J. Comput. 12(2), 388–394 (1983)
Liśkiewicz, M., Loryś, K.: Fast simulations of time-bounded one-tape Turing machines by space-bounded ones. SIAM J. Comput. 19(3), 511–521 (1990)
Paterson, M.: Tape Bounds for Time-Bounded Turing Machines. J. Comput. Syst. Sci. 6(2), 116–124 (1972)
Pighizzini, G.: Nondeterministic one-tape off-line Turing machines and their time complexity. Journal of Automata, Languages and Combinatorics 14(1), 107–124 (2010)
Wechsung, G.: A Crossing Measure for 2-Tape Turing Machines. In: Becvar, J. (ed.) MFCS 1979. LNCS, vol. 74, pp. 508–516. Springer, Heidelberg (1979)
Wiedermann, J.: Speeding-up Single-Tape Nondeterministic Computations by Single Alternation, with Separation Results. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 381–392. Springer, Heidelberg (1996)
Wiedermann, J.: Speeding-Up Nondeterministic Single-Tape Off-Line Computations by One Alternation. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 607–615. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wiedermann, J. (2011). Complexity of Nondeterministic Multitape Computations Based on Crossing Sequences. In: Holzer, M., Kutrib, M., Pighizzini, G. (eds) Descriptional Complexity of Formal Systems. DCFS 2011. Lecture Notes in Computer Science, vol 6808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22600-7_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-22600-7_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22599-4
Online ISBN: 978-3-642-22600-7
eBook Packages: Computer ScienceComputer Science (R0)