Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Algorithms for Testing Monomials in Multivariate Polynomials

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6831))

Abstract

This paper is our second step towards developing a theory of testing monomials in multivariate polynomials. The central question is to ask whether a polynomial represented by an arithmetic circuit has some types of monomials in its sum-product expansion. The complexity aspects of this problem and its variants have been investigated in our first paper by Chen and Fu (2010), laying a foundation for further study. In this paper, we present two pairs of algorithms. First, we prove that there is a randomized O *(p k) time algorithm for testing p-monomials in an n-variate polynomial of degree k represented by an arithmetic circuit, while a deterministic O *((6.4p)k) time algorithm is devised when the circuit is a formula, here p is a given prime number. Second, we present a deterministic O *(2k) time algorithm for testing multilinear monomials in Π m Σ2Π t ×Π k Σ3 polynomials, while a randomized O *(1.5k) algorithm is given for these polynomials. Finally, we prove that testing some special types of multilinear monomial is W[1]-hard, giving evidence that testing for specific monomials is not fixed-parameter tractable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Biswas, S.: Primality and identity testing via Chinese remaindering. Journal of the ACM 50(4), 429–443 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. of Math. 160(2), 781–793 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. Journal of the ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters 8(3), 121–123 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beigel, R.: The polynomial method in circuit compplexity. In: Proceedings of the Eighth Conference on Structure in Complexity Theory, pp. 82–95 (1993)

    Google Scholar 

  6. Chen, Z., Fu, B.: The complexity of testting monomials in multivariate polynomials. In: Proceedings of the Fifth International Conference on Combinatorial Optimization and Applications (2011)

    Google Scholar 

  7. Chen, Z., Fu, B.: Approximating multilinear monomial coefficients and maximum multilinear monomials in multivariate polynomials. In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol. 6508, pp. 309–323. Springer, Heidelberg (2010) (The full version will appear in Journal of Combinatorial Optimization)

    Chapter  Google Scholar 

  8. Chen, J., Lu, S., Sze, S.-H., Zhang, F.: Improved algorithms for path, matching, and packing problems. In: SODA, pp. 298–307 (2007)

    Google Scholar 

  9. Downey, R.G., Fellows, M.R.: Fixed parameter tractability and completeness. II. On completeness for W(1). Theoretical Computer Science 141(1-2), 109–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. Journal of the ACM 43(2), 268–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, B.: Separating PH from PP by relativization. Acta Math. Sinica 8(3), 329–336 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. In: STOC, pp. 355–364 (2003)

    Google Scholar 

  13. Klivans, A., Servedio, R.A.: Learning DNF in time \(2^{\tilde{O}(n^{1/3})}\). In: STOC, pp. 258–265 (2001)

    Google Scholar 

  14. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Minsky, M., Papert, S.: Perceptrons (expanded edition 1988). MIT Press, Cambridge (1968)

    Google Scholar 

  16. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  17. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)

    Google Scholar 

  18. Raz, R., Shpilka, A.: Deterministic polynomial identity testing in non-commutative models. Computational Complexity 14(1), 1–19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)

    Article  MathSciNet  Google Scholar 

  20. Williams, R.: Finding paths of length k in O *(2k) time. Information Processing Letters 109, 315–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Fu, B., Liu, Y., Schweller, R. (2011). Algorithms for Testing Monomials in Multivariate Polynomials. In: Wang, W., Zhu, X., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2011. Lecture Notes in Computer Science, vol 6831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22616-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22616-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22615-1

  • Online ISBN: 978-3-642-22616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics