Abstract
Exact algorithms have made a little progress for the 3-coloring problem since 1976: improved from O(1.4422n n O(1)) to O(1.3289n n O(1)). The best exact algorithm for the 3-coloring problem is by Beigel and Eppstein, and its analysis is very complicated. In this paper, we study the parameterized 3-coloring problem: partitioning a 3-colorable graph into a bipartite subgraph and an independent set. Taking the size of the bipartite subgraph as the parameter k, we develop the first parameter algorithm of complexity O *(1.713k). We use measures other than the given parameter k to achieve better analysis on running time. Such a technique of using novel measures may bring new insight into designing faster algorithms for other NP-hard problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm. In: Proc. 36th Symp. Foundations of Computer Science, pp. 444–453 (1995)
Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54(2), 168–204 (2005)
Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. on Computing 39(2), 546–563 (2009)
Blum, A., Karger, D.: An O(n 3/14)-coloring algorithm for 3-colorable graphs. Information Processing Letter 61(1), 49–53 (1997)
Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)
Chaitin, G.J.: Register allocation & spilling via graph coloring. In: Proc. of the 1982 SIGPLAN Symposium on Compiler Construction, pp. 98–105 (1982)
DÃaz, J., Serna, M., Thilikos, D.M.: (H,C,K)-coloring: fast, easy, and hard cases. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 304–315. Springer, Heidelberg (2001)
Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In: Proc. 12th Symp. on Discrete Algorithms, pp. 329–337 (2001)
Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms and Applications 7(2), 131–140 (2003)
Khanna, S., Linal, N., Safra, S.: On the hardness of approximating the chromatic number. In: Proc. 2nd Isral Symp. on Theory and Computing Systems, pp. 256–260 (1993)
Lawer: A note on the complexity of the chromatic number problem. Information Processing Letter 5(3), 66–67 (1976)
Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. In: Proc. 25th Symp. of Theory of Computing, pp. 286–293 (1993)
Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Operation Research Letters 32(4), 299–301 (2004)
Schiemeyer, I.: Deciding 3-colourability in less than O(1.415n) steps. In: Proc. 19th Int. Workshop Graph-Theoretic Concepts in Computer Science, pp. 177–182 (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Y., Wang, Q. (2011). On the Partition of 3-Colorable Graphs. In: Wang, W., Zhu, X., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2011. Lecture Notes in Computer Science, vol 6831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22616-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-642-22616-8_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22615-1
Online ISBN: 978-3-642-22616-8
eBook Packages: Computer ScienceComputer Science (R0)