Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the Partition of 3-Colorable Graphs

  • Conference paper
Combinatorial Optimization and Applications (COCOA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6831))

  • 1069 Accesses

Abstract

Exact algorithms have made a little progress for the 3-coloring problem since 1976: improved from O(1.4422n n O(1)) to O(1.3289n n O(1)). The best exact algorithm for the 3-coloring problem is by Beigel and Eppstein, and its analysis is very complicated. In this paper, we study the parameterized 3-coloring problem: partitioning a 3-colorable graph into a bipartite subgraph and an independent set. Taking the size of the bipartite subgraph as the parameter k, we develop the first parameter algorithm of complexity O *(1.713k). We use measures other than the given parameter k to achieve better analysis on running time. Such a technique of using novel measures may bring new insight into designing faster algorithms for other NP-hard problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3446n): a no-MIS algorithm. In: Proc. 36th Symp. Foundations of Computer Science, pp. 444–453 (1995)

    Google Scholar 

  2. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54(2), 168–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. on Computing 39(2), 546–563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blum, A., Karger, D.: An O(n 3/14)-coloring algorithm for 3-colorable graphs. Information Processing Letter 61(1), 49–53 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32, 547–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chaitin, G.J.: Register allocation & spilling via graph coloring. In: Proc. of the 1982 SIGPLAN Symposium on Compiler Construction, pp. 98–105 (1982)

    Google Scholar 

  7. Díaz, J., Serna, M., Thilikos, D.M.: (H,C,K)-coloring: fast, easy, and hard cases. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 304–315. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Eppstein, D.: Improved algorithms for 3-coloring, 3-edge-coloring, and constraint satisfaction. In: Proc. 12th Symp. on Discrete Algorithms, pp. 329–337 (2001)

    Google Scholar 

  9. Eppstein, D.: Small maximal independent sets and faster exact graph coloring. J. Graph Algorithms and Applications 7(2), 131–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Khanna, S., Linal, N., Safra, S.: On the hardness of approximating the chromatic number. In: Proc. 2nd Isral Symp. on Theory and Computing Systems, pp. 256–260 (1993)

    Google Scholar 

  11. Lawer: A note on the complexity of the chromatic number problem. Information Processing Letter 5(3), 66–67 (1976)

    Article  MathSciNet  Google Scholar 

  12. Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. In: Proc. 25th Symp. of Theory of Computing, pp. 286–293 (1993)

    Google Scholar 

  13. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Operation Research Letters 32(4), 299–301 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schiemeyer, I.: Deciding 3-colourability in less than O(1.415n) steps. In: Proc. 19th Int. Workshop Graph-Theoretic Concepts in Computer Science, pp. 177–182 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Wang, Q. (2011). On the Partition of 3-Colorable Graphs. In: Wang, W., Zhu, X., Du, DZ. (eds) Combinatorial Optimization and Applications. COCOA 2011. Lecture Notes in Computer Science, vol 6831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22616-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22616-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22615-1

  • Online ISBN: 978-3-642-22616-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics