Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Largest Area Convex Hull of Axis-Aligned Squares Based on Imprecise Data

  • Conference paper
Computing and Combinatorics (COCOON 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6842))

Included in the following conference series:

  • 862 Accesses

Abstract

Data collected from real world are often imprecise. A few algorithms were proposed recently to compute the convex hull of maximum area when the axis-aligned squares model is used to represent imprecise input data. If squares are non-overlapping and of different sizes, the time complexity of the best known algorithm is O(n 7). If squares are allowed to overlap but have the same size, the time complexity of the best known algorithm is O(n 5). In this paper, we improve both bounds by a quadratic factor, i.e., to O(n 5) and O(n 3), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beresford, A.R., Stajano, F.: Location Privacy in Pervasive Computing. IEEE Pervasive Computing 2(1), 46–55 (2003)

    Article  Google Scholar 

  2. Akl, S.G., Toussaint, G.T.: Efficient convex hull algorithms for pattern recognition applications. In: Int. Joint Conf. on Pattern Recognition, pp. 483–487 (1978)

    Google Scholar 

  3. Bhattacharya, B.K., El-Gindy, H.: A new linear convex hull algorithm for simple polygons. IEEE Trans. Inform. Theory 30, 85–88 (1984)

    Article  MATH  Google Scholar 

  4. Bőhm, C., Kriegel, H.: Determining the convex hull in large multidimensional databases. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS, vol. 2114, pp. 298–306. Springer, Heidelberg (2001)

    Google Scholar 

  5. Taubman, D.: High Performance Scalable Image Compression. IEEE Transactions on Image Processing 9, 1158–1170 (2000)

    Article  Google Scholar 

  6. Freeman, H., Shapira, R.: Determining the minimum-area encasing rectangle for an arbitrary closed curve. Communications of the ACM 18(7), 409–413 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters 26, 132–133 (1972)

    Article  MATH  Google Scholar 

  8. Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4, 324–331 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lee, D.T.: On finding the convex huff of a simple polygon. Internat. J. Comput. Inform. Sci. 12, 87–98 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Löffler, M., van Kreveld, M.: Largest and Smallest Convex Hulls for Imprecise Points. Algorithmica 56(2), 235–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Melkman, A.: On-Line Construction of the Convex Hull of a Simple Polyline. Information Processing Letters 25, 11–12 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pfoser, D., Jensen, C.S.: Capturing the uncertainty of moving-objects representations. In: Proceedings of the 6th International Symposium on Advances in Spatial Databases, pp. 111–132 (1999)

    Google Scholar 

  13. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying Imprecise Data in Moving Object. IEEE Transactions on Environments, Knowledge and Data Engineering 16(9), 1112–1127 (2004)

    Article  Google Scholar 

  14. Sistla, P.A., Wolfson, O., Chamberlain, S., Dao, S.: Querying the uncertain position of moving objects. In: Etzion, O., Jajodia, S., Sripada, S. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1399, pp. 310–337. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Daescu, O., Ju, W., Luo, J., Zhu, B. (2011). Largest Area Convex Hull of Axis-Aligned Squares Based on Imprecise Data. In: Fu, B., Du, DZ. (eds) Computing and Combinatorics. COCOON 2011. Lecture Notes in Computer Science, vol 6842. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22685-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22685-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22684-7

  • Online ISBN: 978-3-642-22685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics