Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Illumination Invariant Cost Functions in Semi-Global Matching

  • Conference paper
Computer Vision – ACCV 2010 Workshops (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6469))

Included in the following conference series:

Abstract

The paper evaluates three categories of similarity measures: ordering-based (census), gradient-based, and illumination-based cost functions. The performance of those functions is evaluated especially with respect to illumination changes using two different sets of data, also including real world driving sequences of hundreds of stereo frames with strong illumination differences. The overall result is that there are cost functions in all three categories that can perform well on a quantitative and qualitative level. This leads to the assumption that those cost functions are in fact closely related at a qualitative level, and we provide our explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition – modeling, algorithms, and parameter selection. Int. J. Computer Vision 67, 111–136 (2006)

    Article  MATH  Google Scholar 

  2. Barnard, S.T., Fischler, M.A.: Computational stereo. ACM Computing Surveys 14, 553–572 (1982)

    Article  Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

  4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. .enpeda. image sequences analysis test site, http://www.mi.auckland.ac.nz/EISATS

  6. El-Mahassani, E.D.: New robust matching cost functions for stereo vision. In: Proc. DICTA, pp. 144–150 (2007)

    Google Scholar 

  7. Felzenszwalb, P.F., Huttenlocher, D.: Efficient belief propagation for early vision. Int. J. Computer Vision 70, 41–54 (2006)

    Article  Google Scholar 

  8. Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: Proc. ICCV, pp. 134–143 (2009)

    Google Scholar 

  9. Haeusler, R., Klette, R.: Benchmarking stereo data (Not the matching algorithms). In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 383–392. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proc. CVPR, vol. 2, pp. 807–814 (2005)

    Google Scholar 

  11. Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proc. CVPR, pp. 1–8 (2007)

    Google Scholar 

  12. Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Analysis Machine Intelligence 31, 1582–1599 (2009)

    Article  Google Scholar 

  13. Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: Proc. CVPR, vol. 3, pp. 15–18 (2006)

    Google Scholar 

  14. Middlebury College, stereo vision page, http://vision.middlebury.edu/stereo/

  15. Morales, S., Vaudrey, T., Klette, R.: A third eye for performance evaluation in stereo sequence analysis. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1078–1086. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Morales, S., Woo, Y.W., Klette, R., Vaudrey, T.: A study on stereo and motion data accuracy for a moving platform. In: Kim, J.-H., Ge, S.S., Vadakkepat, P., Jesse, N., Al Manum, A., Puthusserypady, S.K., Rückert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl, T., Baltes, J., Anderson, J., Wong, C.-C., Verner, I., Ahlgren, D. (eds.) Advances in Robotics. LNCS, vol. 5744, pp. 292–300. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Ohta, Y., Kanade, T.: Stereo by two-level dynamic programming. In: Proc. Int. Joint Conf. Artificial Intelligence, vol. 2, pp. 1120–1126 (1985)

    Google Scholar 

  18. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In: Proc. ICCV, pp. 7–42 (2002)

    Google Scholar 

  19. Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: Proc. ICCV, pp. 781–788 (1999)

    Google Scholar 

  20. Vaudrey, T., Klette, R.: Residual images remove illumination artifacts! In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 472–481. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Vaudrey, T., Wedel, A., Klette, R.: A methodology for evaluating illumination artifact removal for corresponding images. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1113–1121. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Zabih, R., Woodfill, J.: Non-parametric local transform for computing visual correspondence. In: Proc. ECCV, vol. 2, pp. 151–158 (1994)

    Google Scholar 

  23. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hermann, S., Morales, S., Vaudrey, T., Klette, R. (2011). Illumination Invariant Cost Functions in Semi-Global Matching. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22819-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22819-3_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22818-6

  • Online ISBN: 978-3-642-22819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics