Abstract
The paper evaluates three categories of similarity measures: ordering-based (census), gradient-based, and illumination-based cost functions. The performance of those functions is evaluated especially with respect to illumination changes using two different sets of data, also including real world driving sequences of hundreds of stereo frames with strong illumination differences. The overall result is that there are cost functions in all three categories that can perform well on a quantitative and qualitative level. This leads to the assumption that those cost functions are in fact closely related at a qualitative level, and we provide our explanation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition – modeling, algorithms, and parameter selection. Int. J. Computer Vision 67, 111–136 (2006)
Barnard, S.T., Fischler, M.A.: Computational stereo. ACM Computing Surveys 14, 553–572 (1982)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis Machine Intelligence 23, 1222–1239 (2001)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)
.enpeda. image sequences analysis test site, http://www.mi.auckland.ac.nz/EISATS
El-Mahassani, E.D.: New robust matching cost functions for stereo vision. In: Proc. DICTA, pp. 144–150 (2007)
Felzenszwalb, P.F., Huttenlocher, D.: Efficient belief propagation for early vision. Int. J. Computer Vision 70, 41–54 (2006)
Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: Proc. ICCV, pp. 134–143 (2009)
Haeusler, R., Klette, R.: Benchmarking stereo data (Not the matching algorithms). In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 383–392. Springer, Heidelberg (2010)
Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: Proc. CVPR, vol. 2, pp. 807–814 (2005)
Hirschmüller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proc. CVPR, pp. 1–8 (2007)
Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Analysis Machine Intelligence 31, 1582–1599 (2009)
Klaus, A., Sormann, M., Karner, K.: Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. In: Proc. CVPR, vol. 3, pp. 15–18 (2006)
Middlebury College, stereo vision page, http://vision.middlebury.edu/stereo/
Morales, S., Vaudrey, T., Klette, R.: A third eye for performance evaluation in stereo sequence analysis. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1078–1086. Springer, Heidelberg (2009)
Morales, S., Woo, Y.W., Klette, R., Vaudrey, T.: A study on stereo and motion data accuracy for a moving platform. In: Kim, J.-H., Ge, S.S., Vadakkepat, P., Jesse, N., Al Manum, A., Puthusserypady, S.K., Rückert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl, T., Baltes, J., Anderson, J., Wong, C.-C., Verner, I., Ahlgren, D. (eds.) Advances in Robotics. LNCS, vol. 5744, pp. 292–300. Springer, Heidelberg (2009)
Ohta, Y., Kanade, T.: Stereo by two-level dynamic programming. In: Proc. Int. Joint Conf. Artificial Intelligence, vol. 2, pp. 1120–1126 (1985)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In: Proc. ICCV, pp. 7–42 (2002)
Szeliski, R.: Prediction error as a quality metric for motion and stereo. In: Proc. ICCV, pp. 781–788 (1999)
Vaudrey, T., Klette, R.: Residual images remove illumination artifacts! In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 472–481. Springer, Heidelberg (2009)
Vaudrey, T., Wedel, A., Klette, R.: A methodology for evaluating illumination artifact removal for corresponding images. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1113–1121. Springer, Heidelberg (2009)
Zabih, R., Woodfill, J.: Non-parametric local transform for computing visual correspondence. In: Proc. ECCV, vol. 2, pp. 151–158 (1994)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hermann, S., Morales, S., Vaudrey, T., Klette, R. (2011). Illumination Invariant Cost Functions in Semi-Global Matching. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22819-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-22819-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22818-6
Online ISBN: 978-3-642-22819-3
eBook Packages: Computer ScienceComputer Science (R0)