Abstract
A key feature in developing an effective web personalization system is to build and model a dynamic user profiles. In this paper, we propose a novel method to construct user personalized ontological profiles based on each user’s interests and view. We also propose an Enhanced Spreading Activation Technique (ESAT) to infer and recommend new items to a user based on each user’s personalized ontological profile. Using the MovieLens dataset, we show that our approach achieves the highest prediction accuracy, and outperforms other recommendation approaches that were proposed in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mobasher, B., Jin, X., Zhou, Y.: Semantically Enhanced Collaborative Filtering on the Web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004)
Blanco-Fernández, Y., López-Nores, M., Pazos-Arias, J.: Adapting Spreading Activation Techniques towards a New Approach to Content-Based Recommender Systems. IIMSS 6, 1–11 (2010)
Liang, T.P., Yang, Y., Chen, D., Ku, Y.C.: A semantic-expansion approach to personalized knowledge recommendation. Decision Support Systems 45, 401–412 (2007)
Sieg, A., Mobasher, B., Burke, R.: Improving the effectiveness of collaborative recommendation with ontology-based user profiles. In: Proc. of Intl. WIHFR, pp. 39–46 (2010)
Gao, Q., Yan, J., Liu, M.: A Semantic Approach to Recommendation System Based on User Ontology and Spreading Activation Model. In: IFIP, pp. 488–492 (2008)
Challam, V., Gauch, S., Chandramouli, A.: Contextual Search Using Ontology-Based User Profiles. In: Proceedings of RIAO 2007, Pittsburgh, USA (2007)
Jiang, X., Tan, A.: Learning and inferencing in user ontology for personalized Semantic Web search. Information Sciences: an International Journal 179 (2009)
Liang, T.P., Lai, H.-J.: Discovering user interests from Web browsing behavior. In: International Conference on Systems Sciences, pp. 203–212 (2002)
Paramythis, A., König, F., Schwendtner, C., van Velsen, L.: Using Thematic Ontologies for User- and Group-Based Adaptive Personalization in Web Searching. In: Detyniecki, M., Leiner, U., Nürnberger, A. (eds.) AMR 2008. LNCS, vol. 5811, pp. 18–27. Springer, Heidelberg (2010)
Li, L., Yang, Z., Wang, B., Kitsuregawa, M.: Dynamic Adaptation Strategies for Long-Term and Short-Term User Profile to Personalize Search. In: APWeb, pp. 228–240 (2007)
Sumalatha, M.R., Vaidehi, V., Kannan, A., Anandhi, S.: Information Retrieval using Semantic Web Browser-Personalized and Categorical Web Search. In: ICSCN 2007, pp. 238–243 (2007)
Mohammed, N.U., Duong, T.H., Jo, G.S.: Contextual Information Search Based on Ontological User Profile. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6422, pp. 490–500. Springer, Heidelberg (2010)
Aho, A., Hopcroft, J., Ullman, J.: On Finding Lowest Common Ancestors in Trees. SIAM J. Comput., 115–132 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hawalah, A., Fasli, M. (2011). Using User Personalized Ontological Profile to Infer Semantic Knowledge for Personalized Recommendation. In: Huemer, C., Setzer, T. (eds) E-Commerce and Web Technologies. EC-Web 2011. Lecture Notes in Business Information Processing, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23014-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-642-23014-1_24
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23013-4
Online ISBN: 978-3-642-23014-1
eBook Packages: Computer ScienceComputer Science (R0)