Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Ontology-Based Method for Duplicate Detection in Web Data Tables

  • Conference paper
Database and Expert Systems Applications (DEXA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6860))

Included in the following conference series:

  • 1266 Accesses

Abstract

We present, in this paper, a duplicate detection method in semantically annotated Web data tables, driven by a domain Termino-Ontological Resource (TOR). Our method relies on the fuzzy semantic annotations automatically associated with the Web data tables. A fuzzy semantic annotation is automatically associated with each row of a Web data table. It corresponds to the instantiation of a composed concept of the domain TOR, which represents the semantic n-ary relationship that exists between the columns of the Web data table. A fuzzy semantic annotation contains fuzzy values expressed as fuzzy sets. We propose an automatic duplicate detection method which consists in detecting the pairs of duplicate fuzzy semantic annotations and relies on (i) knowledge declared in the domain TOR and on (ii) similarity measures between fuzzy sets. Two new similarity measures are defined to compare both, the symbolic fuzzy values and the numerical fuzzy values. Our method has been tested on a real application in the domain of chemical risk in food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hignette, G., Buche, P., Dibie-Barthélemy, J., Haemmerlé, O.: Fuzzy annotation of web data tables driven by a domain ontology. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 638–653. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  3. Saïs, F., Pernelle, N., Rousset, M.C.: Combining a logical and a numerical method for data reconciliation. J. Data Semantics 12, 66–94 (2009)

    Article  Google Scholar 

  4. Buche, P., Haemmerlé, O.: Towards a unified querying system of both structured and semi-structured imprecise data using fuzzy view. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 207–220. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Buche, P., Dibie-Barthélemy, J., Chebil, H.: Flexible sparql querying of web data tables driven by an ontology. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 345–357. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Roche, C., Calberg-Challot, M., Damas, L., Rouard, P.: Ontoterminology - a new paradigm for terminology. In: KEOD, pp. 321–326 (2009)

    Google Scholar 

  7. Reymonet, A., Thomas, J., Aussenac-Gilles, N.: Modelling ontological and terminological resources in OWL DL. In: OntoLex-Workshop at ISWC 2007 (2007)

    Google Scholar 

  8. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets and Systems 90, 141–150 (1997)

    Article  MATH  Google Scholar 

  9. Bouchon-Meunier, B., Rifqi, M., Bothorel, S.: Towards general measures of comparison of objects. Fuzzy Sets and Systems 11, 143–153 (1996)

    Article  MATH  Google Scholar 

  10. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string similarity measures. In: KDD, pp. 39–48 (2003)

    Google Scholar 

  11. Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  12. Tversky, A.: Features of similarity. Psychological Review 84, 327–352 (1977)

    Article  Google Scholar 

  13. Largeron, C., Kaddour, B., Fernandez, M.: Softjaccard: une mesure de similarité entre ensembles de chaînes de caractères pour l’unification d’entités nommées. In: Extaction et Gestion des Connaissances (EGC) (2009)

    Google Scholar 

  14. Hsieh, C.H., Chen, S.H.: Similarity of generalized fuzzy numbers with graded mean integration represntation. In: Proc. 8th IFSA World Congr., vol. 2, pp. 551–555 (1999)

    Google Scholar 

  15. Chen, S.M.: New methods for subjective mental workload assessment and fuzzy risk analysis. Cybernetics and Systems 27, 449–472 (1996)

    Article  MATH  Google Scholar 

  16. Chen, S.J., Chen, S.M.: Fuzzy risk analysis based on similarity measures of generalized fuzzy numbers. IEEE 11(1), 45–56 (2003)

    Google Scholar 

  17. Cohn, D.A., Atlas, L.E., Ladner, R.E.: Improving generalization with active learning. Machine Learning 15(2), 201–221 (1994)

    Google Scholar 

  18. Tejada, S., Knoblock, C.A., Minton, S.: Learning object identification rules for information integration. Inf. Syst. 26(8), 607–633 (2001)

    Article  MATH  Google Scholar 

  19. Saïs, F., Pernelle, N., Rousset, M.C.: L2R: A logical method for reference reconciliation. In: AAAI Conference on Artificial Intelligence, pp. 329–334 (2007)

    Google Scholar 

  20. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W.: Google fusion tables: data management, integration and collaboration in the cloud. In: SoCC, pp. 175–180 (2010)

    Google Scholar 

  21. Gonzalez, H., Halevy, A.Y., Jensen, C.S., Langen, A., Madhavan, J., Shapley, R., Shen, W., Goldberg-Kidon, J.: Google fusion tables: web-centered data management and collaboration. In: SIGMOD Conference, pp. 1061–1066 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Buche, P., Dibie-Barthélemy, J., Khefifi, R., Saïs, F. (2011). An Ontology-Based Method for Duplicate Detection in Web Data Tables. In: Hameurlain, A., Liddle, S.W., Schewe, KD., Zhou, X. (eds) Database and Expert Systems Applications. DEXA 2011. Lecture Notes in Computer Science, vol 6860. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23088-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23088-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23087-5

  • Online ISBN: 978-3-642-23088-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics