Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improved Fingerprint Enhancement Performance via GPU Programming

  • Conference paper
Image Processing and Communications Challenges 3

Summary

This paper presents a fast GPU (Graphics Processing Unit) implementation to enhance fingerprint images by a Gabor filter-bank based algorithm. We apply a Gabor filter bank and compute image variances of the convolution responses. We then select parts of these responses and compose the final enhanced image. The algorithm presents a good mapping of data elements and partitions the processing steps into parallel threads to exploit GPU parallelism. The algorithm was implemented on the CPU as well. Both implementations were fed fingerprint images of different sizes and qualities from the FVC2004 DB2 database. We compare the execution speed between the CPU and GPU. This comparison shows that the algorithm is at least 2 times faster on a 112 cores GPU than the CPU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition (2003)

    Google Scholar 

  2. Rao, A.R.: A taxonomy for texture description and identification. Springer, New York, Inc (1990)

    MATH  Google Scholar 

  3. Kamei, T., Mizoguchi, M.: Image filter design for fingerprint enhancement. In: International Symposium on Computer Vision, p. 109 (1995)

    Google Scholar 

  4. Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 777–789 (1998)

    Article  Google Scholar 

  5. Chikkerur, S., Wu, C., Govindaraju, V.: A systematic approach for feature extraction in fingerprint images. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 344–350. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Boukala, N., Rugna, J.D., Monnet, U.J.: Fast and accurate color image processing using 3d graphics cards. In: Proceedings Vision, Modeling and Visualization (2003)

    Google Scholar 

  7. Angel, E., Moreland, K.: Fourier Processing in the Graphics Pipeline. In: Integrated Image and Graphics Technologies, pp. 95–110. Kluwer Academic Publishers, Dordrecht (2004)

    Chapter  Google Scholar 

  8. Jargstorff, F.: A framework for image processing. In: Fernando, R. (ed.) GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics, pp. 445–467. Addison-Wesley, Reading (2004)

    Google Scholar 

  9. Fung, J., Mann, S.: Openvidia: parallel gpu computer vision. In: Proceedings of the 13th annual ACM international conference on Multimedia MULTIMEDIA 2005, pp. 849–852. ACM, New York (2005)

    Chapter  Google Scholar 

  10. Strzodka, R., Telea, A.: Generalized Distance Transforms and skeletons in graphics hardware. In: Proceedings of EG/IEEE TCVG Symposium on Visualization (VisSym 2004), pp. 221–230 (2004)

    Google Scholar 

  11. Strzodka, R., Garbe, C.: Real-time motion estimation and visualization on graphics cards. In: Proceedings of the conference on Visualization 2004. VIS 2004, pp. 545–552. IEEE Computer Society Press, Washington, DC, USA (2004)

    Google Scholar 

  12. Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: Proceedings of the British Machine Vision Conference (BMVC), London, UK (September 2009)

    Google Scholar 

  13. Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA (June 2010)

    Google Scholar 

  14. Nvidia, Cuda presentation (2004), http://www.nvidia.com/object/what_is_cuda_new.html

  15. Nvidia, Direct compute (2011), http://www.nvidia.com/object/cuda_directcompute.html

  16. group, K.: Opencl khronos group (2011), http://www.khronos.org/opencl/

  17. Hong, L., Jain, A.K., Pankanti, S., Bolle, R.: Fingerprint enhancement. Tech. Rep. MSU-CPS-96-45, Department of Computer Science, Michigan State University, East Lansing, Michigan (1996)

    Google Scholar 

  18. Bernard, S., Boujemaa, N., Vitale, D., Bricot, C.: Fingerprint segmentation using the phase of multiscale gabor wavelets (2002)

    Google Scholar 

  19. FVC2004, Fingerprint database (2004), http://bias.csr.unibo.it/fvc2004/

  20. Sumanaweera, T.: Medical image reconstruction with the fft. In: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation (Gpu Gems), Addison-Wesley, Reading (2005)

    Google Scholar 

  21. Bainville, E.: Opencl fast fourier transform (2010), http://www.bealto.com/gpu-fft_dft.html

  22. Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint matching. IEEE Transactions on Image Processing (9), 846–859 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lehtihet, R., El Oraiby, W., Benmohammed, M. (2011). Improved Fingerprint Enhancement Performance via GPU Programming. In: ChoraÅ›, R.S. (eds) Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23154-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23154-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23153-7

  • Online ISBN: 978-3-642-23154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics