Summary
This paper presents a fast GPU (Graphics Processing Unit) implementation to enhance fingerprint images by a Gabor filter-bank based algorithm. We apply a Gabor filter bank and compute image variances of the convolution responses. We then select parts of these responses and compose the final enhanced image. The algorithm presents a good mapping of data elements and partitions the processing steps into parallel threads to exploit GPU parallelism. The algorithm was implemented on the CPU as well. Both implementations were fed fingerprint images of different sizes and qualities from the FVC2004 DB2 database. We compare the execution speed between the CPU and GPU. This comparison shows that the algorithm is at least 2 times faster on a 112 cores GPU than the CPU.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition (2003)
Rao, A.R.: A taxonomy for texture description and identification. Springer, New York, Inc (1990)
Kamei, T., Mizoguchi, M.: Image filter design for fingerprint enhancement. In: International Symposium on Computer Vision, p. 109 (1995)
Hong, L., Wan, Y., Jain, A.: Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 777–789 (1998)
Chikkerur, S., Wu, C., Govindaraju, V.: A systematic approach for feature extraction in fingerprint images. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 344–350. Springer, Heidelberg (2004)
Boukala, N., Rugna, J.D., Monnet, U.J.: Fast and accurate color image processing using 3d graphics cards. In: Proceedings Vision, Modeling and Visualization (2003)
Angel, E., Moreland, K.: Fourier Processing in the Graphics Pipeline. In: Integrated Image and Graphics Technologies, pp. 95–110. Kluwer Academic Publishers, Dordrecht (2004)
Jargstorff, F.: A framework for image processing. In: Fernando, R. (ed.) GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics, pp. 445–467. Addison-Wesley, Reading (2004)
Fung, J., Mann, S.: Openvidia: parallel gpu computer vision. In: Proceedings of the 13th annual ACM international conference on Multimedia MULTIMEDIA 2005, pp. 849–852. ACM, New York (2005)
Strzodka, R., Telea, A.: Generalized Distance Transforms and skeletons in graphics hardware. In: Proceedings of EG/IEEE TCVG Symposium on Visualization (VisSym 2004), pp. 221–230 (2004)
Strzodka, R., Garbe, C.: Real-time motion estimation and visualization on graphics cards. In: Proceedings of the conference on Visualization 2004. VIS 2004, pp. 545–552. IEEE Computer Society Press, Washington, DC, USA (2004)
Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: Proceedings of the British Machine Vision Conference (BMVC), London, UK (September 2009)
Werlberger, M., Pock, T., Bischof, H.: Motion estimation with non-local total variation regularization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA (June 2010)
Nvidia, Cuda presentation (2004), http://www.nvidia.com/object/what_is_cuda_new.html
Nvidia, Direct compute (2011), http://www.nvidia.com/object/cuda_directcompute.html
group, K.: Opencl khronos group (2011), http://www.khronos.org/opencl/
Hong, L., Jain, A.K., Pankanti, S., Bolle, R.: Fingerprint enhancement. Tech. Rep. MSU-CPS-96-45, Department of Computer Science, Michigan State University, East Lansing, Michigan (1996)
Bernard, S., Boujemaa, N., Vitale, D., Bricot, C.: Fingerprint segmentation using the phase of multiscale gabor wavelets (2002)
FVC2004, Fingerprint database (2004), http://bias.csr.unibo.it/fvc2004/
Sumanaweera, T.: Medical image reconstruction with the fft. In: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation (Gpu Gems), Addison-Wesley, Reading (2005)
Bainville, E.: Opencl fast fourier transform (2010), http://www.bealto.com/gpu-fft_dft.html
Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint matching. IEEE Transactions on Image Processing (9), 846–859 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lehtihet, R., El Oraiby, W., Benmohammed, M. (2011). Improved Fingerprint Enhancement Performance via GPU Programming. In: ChoraÅ›, R.S. (eds) Image Processing and Communications Challenges 3. Advances in Intelligent and Soft Computing, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23154-4_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-23154-4_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23153-7
Online ISBN: 978-3-642-23154-4
eBook Packages: EngineeringEngineering (R0)