Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intersection Types for the Resource Control Lambda Calculi

  • Conference paper
Theoretical Aspects of Computing – ICTAC 2011 (ICTAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6916))

Included in the following conference series:

Abstract

We propose intersection type assignment systems for two resource control term calculi: the lambda calculus and the sequent lambda calculus with explicit operators for weakening and contraction. These resource control calculi, λ ® and \(\lambda_\circledR^{Gtz}\), respectively, capture the computational content of intuitionistic natural deduction and intuitionistic sequent logic with explicit structural rules. Our main contribution is the characterisation of strong normalisation of reductions in both calculi. We first prove that typability implies strong normalisation in λ ® by adapting the reducibility method. Then we prove that typability implies strong normalisation in \(\lambda_\circledR^{Gtz}\) by using a combination of well-orders and a suitable embedding of \(\lambda_\circledR^{Gtz}\)-terms into λ ®-terms which preserves types and enables the simulation of all its reductions by the operational semantics of the λ ®-calculus. Finally, we prove that strong normalisation implies typability in both systems using head subject expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: Computational interpretations of linear logic. Theor. Comput. Sci. 111(1&2), 3–57 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, UK (1998)

    Book  MATH  Google Scholar 

  3. Barbanera, F., Berardi, S.: A symmetric lambda calculus for classical program extraction. Inform. Comput. 125(2), 103–117 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam (1984), revised edition

    MATH  Google Scholar 

  5. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, pp. 117–309. Oxford University Press, UK (1992)

    Google Scholar 

  6. Barendregt, H.P., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. J. Symb. Logic 48(4), 931–940 (1984) (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benton, N., Bierman, G., de Paiva, V., Hyland, M.: A term calculus for intuitionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 75–90. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  8. Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Computer Science in the Netherlands, CSN 1995, pp. 62–72 (1995)

    Google Scholar 

  9. Coppo, M., Dezani-Ciancaglini, M.: A new type-assignment for lambda terms. Archiv für Mathematische Logik 19, 139–156 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coppo, M., Dezani-Ciancaglini, M.: An extension of the basic functionality theory for the λ-calculus. Notre Dame J. Formal Logic 21(4), 685–693 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Curien, P.-L., Herbelin, H.: The duality of computation. In: 5th International Conference on Functional Programming, ICFP 2000, pp. 233–243. ACM Press, New York (2000)

    Google Scholar 

  12. Dezani-Ciancaglini, M., Ghilezan, S., Likavec, S.: Behavioural Inverse Limit Models. Theor. Comput Sci. 316(1-3), 49–74 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dougherty, D.J., Ghilezan, S., Lescanne, P.: Characterizing strong normalization in the Curien-Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritage. Theor. Comput Sci. 398, 114–128 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Espírito Santo, J.: Completing herbelin’s programme. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 118–132. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Espírito Santo, J., Ivetić, J., Likavec, S.: Characterising strongly normalising intuitionistic terms. Fundamenta Informaticae (to appear 2011)

    Google Scholar 

  16. Gallier, J.: Typing untyped λ-terms, or reducibility strikes again! Ann. Pure Appl. Logic 91, 231–270 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghilezan, S.: Strong normalization and typability with intersection types. Notre Dame J. Formal Logic 37(1), 44–52 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ghilezan, S., Ivetić, J., Lescanne, P., Žunić, D.: Intuitionistic sequent-style calculus with explicit structural rules. In: Bezhanishvili, N. (ed.) TbiLLC 2009. LNCS, vol. 6618, pp. 101–124. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Ghilezan, S., Likavec, S.: Computational interpretations of logics. In: Ognjanović, Z. (ed.) Collection of Papers, Special issue Logic in Computer Science, vol. 20(12), pp. 159–215. Mathematical Institute of Serbian Academy of Sciences and Arts (2009)

    Google Scholar 

  20. Herbelin, H.: A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  21. Howard, W.A.: The formulas-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490. Academic Press, London (1980)

    Google Scholar 

  22. Kesner, D., Lengrand, S.: Resource operators for lambda-calculus. Inform. Comput. 205(4), 419–473 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kesner, D., Renaud, F.: The prismoid of resources. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 464–476. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Kikuchi, K.: Simple proofs of characterizing strong normalization for explicit substitution calculi. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 257–272. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Matthes, R.: Characterizing strongly normalizing terms of a λ-calculus with generalized applications via intersection types. In: Hindley, J.R., et al. (eds.) ICALP Workshops 2000. Carleton Scientific (2000)

    Google Scholar 

  26. Neergaard, P.M.: Theoretical pearls: A bargain for intersection types: a simple strong normalization proof. J. Funct. Program. 15(5), 669–677 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pagani, M., della Rocca, S.R.: Solvability in resource lambda-calculus. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 358–373. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  28. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  29. Pottinger, G.: A type assignment for the strongly normalizable λ-terms. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 561–577. Academic Press, London (1980)

    Google Scholar 

  30. Regnier, L.: Une équivalence sur les lambda-termes. Theor. Comput Sci. 126(2), 281–292 (1994)

    Article  MATH  Google Scholar 

  31. Rose, K.H.: CRSX - Combinatory Reduction Systems with Extensions. In: Schmidt-Schauß, M. (ed.) 22nd International Conference on Rewriting Techniques and Applications, RTA 2011. Leibniz International Proceedings in Informatics (LIPIcs), vol. 10, pp. 81–90. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  32. Rose, K.H.: Implementation Tricks That Make CRSX Tick. Talk at IFIP 1.6 Workshop, RDP 2011 (May 2011)

    Google Scholar 

  33. Sallé, P.: Une extension de la théorie des types en lambda-calcul. In: Ausiello, G., Böhm, C. (eds.) ICALP 1978. LNCS, vol. 62, pp. 398–410. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

  34. Schroeder-Heister, P., Došen, K.: Substructural Logics. Oxford University Press, UK (1993)

    MATH  Google Scholar 

  35. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symb. Logic 32, 198–212 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  36. van Bakel, S.: Complete restrictions of the intersection type discipline. Theor. Comput Sci. 102(1), 135–163 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ghilezan, S., Ivetić, J., Lescanne, P., Likavec, S. (2011). Intersection Types for the Resource Control Lambda Calculi. In: Cerone, A., Pihlajasaari, P. (eds) Theoretical Aspects of Computing – ICTAC 2011. ICTAC 2011. Lecture Notes in Computer Science, vol 6916. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23283-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23283-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23282-4

  • Online ISBN: 978-3-642-23283-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics