Abstract
Understanding privacy in a data storage environment has become of increasing interest to the data management and user communities over the past decade. Previous work has produced a number of definitions with greater or lesser specificity. The value of a particular definition can only be understood in light of how it helps us understand when a privacy violation occurs. This paper builds upon earlier work that defines privacy using a four-dimensional taxonomy with an inherent sense of increasing privacy exposure. This taxonomy is extended to formally capture the notions of (a) privacy violations, (b) the severity of a privacy violation, and (c) the likelihood of data providers ceasing to provide data due to privacy exposures. The privacy violation model developed here provides an operational framework to characterize and estimate privacy violation in a relational database system. It also allows one to calculate the consequences to the data provider of widening privacy policies. We describe a quantitative analysis of violations that captures discrepancies between the data collector’s stated policies and practices in comparison to the data providers’ data preferences. We demonstrate this analysis using a simple example and show how the accumulation of privacy violations can have a detrimental effect upon the data collector.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barker, K., Askari, M., Banerjee, M., Ghazinour, K., Mackas, B., Majedi, M., Pun, S., Williams, A.: A data privacy taxonomy. In: Sexton, A.P. (ed.) BNCOD 26. LNCS, vol. 5588, pp. 42–54. Springer, Heidelberg (2009)
Dwork, C.: Ask a better question, get a better answer a new approach to private data analysis. In: Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 18–27. Springer, Heidelberg (2006)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)
Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)
Ghazinour, K., Barker, K.: Capturing p3p semantics using an enforceable lattice-based structure. In: Proceedings of the 4th International Workshop on Privacy and Anonymity in the Information Society, PAIS 2011, pp. 4:1–4:6. ACM, New York (2011), http://doi.acm.org/10.1145/1971690.1971694
Gianini, G., Damiani, E.: A game-theoretical approach to data-privacy protection from context-based inference attacks: A location-privacy protection case study. In: Jonker, W., Petkovic, M. (eds.) SDM 2008. LNCS, vol. 5159, pp. 133–150. Springer, Heidelberg (2008)
van Heerde, H., Fokkinga, M., Anciaux, N.: A framework to balance privacy and data usability using data degradation. In: International Conference on Computational Science and Engineering, CSE 2009, vol. 3, pp. 146–153 (29-31, 2009)
Huberman, B.A., Adar, E., Fine, L.R.: Valuating privacy. IEEE Security & Privacy 3, 22–25 (2005)
Jafari, M., Fong, P.W., Safavi-Naini, R., Barker, K., Sheppard, N.P.: Towards defining semantic foundations for purpose-based privacy policies. In: Proceedings of the first ACM conference on Data and application security and privacy, CODASPY 2011, pp. 213–224. ACM, New York (2011), http://doi.acm.org/10.1145/1943513.1943541
Kobsa, A.: Privacy-enhanced web personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 628–670. Springer, Heidelberg (2007)
Kumaraguru, P., Cranor, L.F.: Privacy indexes: A survey of Westin’s studies. Tech. rep., Carnegie Mellon University (2005)
Lebanon, G., Scannapieco, M., Fouad, M.R., Bertino, E.: Beyond k-anonymity: A decision theoretic framework for assessing privacy risk. Trans. Data Privacy 2, 153–183 (2009), http://portal.acm.org/citation.cfm?id=1744063.1744064
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: Privacy beyond k-anonymity and l-diversity. In: IEEE 23rd International Conference on Data Engineering, ICDE 2007, pp. 106–115 (2007)
Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1 (March 2007), http://doi.acm.org/10.1145/1217299.1217302
Ngoc, T.H., Echizen, I., Komei, K., Yoshiura, H.: New approach to quantification of privacy on social network sites. In: International Conference on Advanced Information Networking and Applications (2005)
Preibusch, S.: Implementing privacy negotiations in e-commerce (2005)
Ren, Y., Xiao, Z.: A privacy data release method based on game theory. In: 2nd International Conference on e-Business and Information System Security (EBISS) 2010, pp. 1–4 (May 2010)
Renỳi, A.: Probability Theory. Dover Press, New York (2007)
Rozanov, Y.: Probability Theory: A Concise Course. Dover Press, New York (1977)
Sweeney, L.: k-anonymity: A model for protecting privacy. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5)
Westin, A.F.: Social and political dimensions of privacy. Journal of Social Issues 59(2), 431–453 (2003)
Williams, A., Barker, K.: Controlling inference: avoiding p-level reduction during analysis. In: Proceedings of the fifth Australasian symposium on ACSW frontiers, ACSW 2007, vol. 68, pp. 193–200. Australian Computer Society, Inc., Darlinghurst (2007), http://portal.acm.org/citation.cfm?id=1274531.1274554
Wu, L., Majedi, M., Ghazinour, K., Barker, K.: Analysis of social networking privacy policies. In: EDBT 2010: Proceedings of the 2010 EDBT/ICDT Workshops, pp. 1–5. ACM, New York (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Banerjee, M., Karimi Adl, R., Wu, L., Barker, K. (2011). Quantifying Privacy Violations. In: Jonker, W., Petković, M. (eds) Secure Data Management. SDM 2011. Lecture Notes in Computer Science, vol 6933. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23556-6_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-23556-6_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23555-9
Online ISBN: 978-3-642-23556-6
eBook Packages: Computer ScienceComputer Science (R0)