Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Efficient Method for Odor Retrieval

  • Conference paper
Brain Informatics (BI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6889))

Included in the following conference series:

Abstract

Recently, researchers have been increasingly interested in odor database retrieval using the sense of smell. However, it has two difficulties; different from sight- or hearing-sense database retrieval. One is that odor scientists have not yet been able to find a base component of odor, such as RGB or frequency. Therefore, smell-sense database retrieval cannot be conducted using a physical quantity. The other is that relevance tests of each retrieval result require a larger load. Conventional approaches have represented an odor by either a noun or impression word. It is more feasible if a user can efficiently obtain the relevant retrieval results by employing both nouns and impression words such as ‘odor like slightly sweet coffee’. In this paper, we propose such an efficient method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Herz, R.S.: The Unique Interaction between Language and Olfactory Perception and Cognition. Tends in Experimental Psychology Research, 91–109 (2005)

    Google Scholar 

  2. Burr, C.: Emperor of Scent: A Story of Perfume, Obsession and the Last Mystery of the Senses. Arrow Books Ltd. (2004)

    Google Scholar 

  3. Plumacher, M., Holz, P.: Speaking of Colors and Odors (Converging Evidence in Language and Communication Research). John Benjamins Pub. Co, Amsterdam (2007)

    Book  Google Scholar 

  4. Herz, R.S.: The Effect of Verbal Context in Olfactory Perception. J. Experimental Psychology: General 132, 595–606 (2003)

    Article  Google Scholar 

  5. Loutfi, A., Coradeschi, S.: Odor Recognition for Intelligent Systems. J. IEEE Intelligent Systems 23(1), 41–48 (2008)

    Article  Google Scholar 

  6. Kwon, K., Kim, N., Byun, H., Persaud, K.: On Training Neural Network Algorithm for Odor Identification for Future Multimedia Communication Systems. In: 2006 IEEE International Conference on Multimedia and Expo. (ICME), pp. 1309–1312 (2006)

    Google Scholar 

  7. Yamada, T.: Yokoyama, et al.: Wearable Olfactory Display: Using in Outdoor Environment. In: IEEE Virtual Reality Conference (VR 2006), pp. 199–206 (2006)

    Google Scholar 

  8. Bannai, Y., Ishizawa, M., Shigeno, H., Okada, K.: A Communication Model of Scents Mediated by Sense-descriptive Adjectives. In: Pan, Z., Cheok, D.A.D., Haller, M., Lau, R., Saito, H., Liang, R. (eds.) ICAT 2006. LNCS, vol. 4282, pp. 1322–1332. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Katayose, H., et al.: Kansei Music System. J. Comp. Music 13(4), 72–77 (1990)

    Article  Google Scholar 

  10. Kumamoto, T.: Design and Evaluation of a Music Retrieval Scheme that Adapts to the User’s Impressions. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 287–296. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Ikezoe, T., et al.: Music Database Retrieval System with Sensitivity Words Using Music Sensitivity space. J. IPSJ 42(12), 3201–3212 (2001) (in Japanese)

    Google Scholar 

  12. Takayama, T., Ikeda, et al.: Proposition of Direct Interface for Multimedia Database Retrieval by the Combination of Impression Values. In: 2003 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 609–612 (2003)

    Google Scholar 

  13. Nakajima, S., Kinoshita, S., et al.: Amplifying the Differences between Your Positive Samples and Neighbors. In: IEEE International Conference on Multimedia & Expo. (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takayama, T., Kikuchi, S., Murata, Y., Sato, N., Ikeda, T. (2011). An Efficient Method for Odor Retrieval. In: Hu, B., Liu, J., Chen, L., Zhong, N. (eds) Brain Informatics. BI 2011. Lecture Notes in Computer Science(), vol 6889. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23605-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23605-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23604-4

  • Online ISBN: 978-3-642-23605-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics