Abstract
In the current clinical workflow of endovascular abdominal aortic repairs (EVAR) a stent graft is inserted into the aneurysmatic aorta under 2D angiographic imaging. Due to the missing depth information in the X-ray visualization, it is highly difficult in particular for junior physicians to place the stent graft in the preoperatively defined position within the aorta. Therefore, advanced 3D visualization of stent grafts is highly required. In this paper, we present a novel algorithm to automatically match a 3D model of the stent graft to an intraoperative 2D image showing the device. By automatic preprocessing and a global-to-local registration approach, we are able to abandon user interaction and still meet the desired robustness. The complexity of our registration scheme is reduced by a semi-simultaneous optimization strategy incorporating constraints that correspond to the geometric model of the stent graft. Via experiments on synthetic, phantom, and real interventional data, we are able to show that the presented method matches the stent graft model to the 2D image data with good accuracy.
Chapter PDF
Similar content being viewed by others
Keywords
- Abdominal Aortic Aneurysm
- Abdominal Aortic Aneurysm
- Stent Graft
- Target Registration Error
- Aortic Stent Graft
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Demirci, S., Manstad-Hulaas, F., Navab, N.: Quantification of aortic deformation after EVAR. In: Miga, M.I., Wong, K.H. (eds.) Medical Imaging: Visualization, Image-Guided Procedures, and Modeling. Proceedings of SPIE. SPIE, vol. 7261, p. 72611U (2009)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Hartley, R., Zisserman, A.: Multiple View Geometry, 2nd edn. University Press, Cambridge (2003)
Klein, A., Renema, W., Schultze Kool, L., Slump, C.: Initial steps towards automatic segmentation of the wire frame of stent grafts in ct data. In: 4th Annual Symposium of the IEEE-EMBS Benelux Chapter, pp. 116–119. IEEE-EMBS Benelux Chapter, Enschede (2009)
Klein, A., Oostveen, L.J., Greuter, M.J.W., Hoogeveen, Y., Schultze Kool, L.J., Slump, C.H., Renema, W.K.J.: Detectability of motions in aaa with ecg-gated cta: a quantitative study. Med. Phys. 36(10), 4616–4624 (2009)
Liao, R., Tan, Y., Sundar, H., Pfister, M., Kamen, A.: An efficient graph-based deformable 2D/3D registration algorithm with applications for abdominal aortic aneurysm interventions. In: Liao, H., Edwards, P.J., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 561–570. Springer, Heidelberg (2010)
Mattes, J., Steingruber, I., Netzer, M., Fritscher, K., Kopf, H., Jaschke, W., Schubert, R.: Quantification of the migration and deformation of abdominal aortic aneurysm stent grafts. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Medical Imaging: Image Processing. Proceedings of SPIE, vol. 6144, p. 61440V. SPIE (2006)
Raheem, A., Carrell, T., Modarai, B., Penney, G.: Non-rigid 2D-3D image registration for use in endovascular repair of abdominal aortic aneurysms. In: Bhalerao, A.H., Rajpoot, N.M. (eds.) Proceedings of Medical Image Understanding and Analysis, pp. 153–158. University of Warwick (2010)
Sidorov, K., Richmond, S., Marshall, D.: An efficient stochastic approach to groupwise non-rigid image registration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2208–2213. IEEE Press, Los Alamitos (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Demirci, S. et al. (2011). 3D Stent Recovery from One X-Ray Projection. In: Fichtinger, G., Martel, A., Peters, T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23623-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-23623-5_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23622-8
Online ISBN: 978-3-642-23623-5
eBook Packages: Computer ScienceComputer Science (R0)