Abstract
Computer aided detection (CAD) systems have emerged as noninvasive and effective tools, using 3D CT Colonography (CTC) for early detection of colonic polyps. In this paper, we propose a robust and automatic polyp prone-supine view matching method, to facilitate the regular CTC workflow where radiologists need to manually match the CAD findings in prone and supine CT scans for validation. Apart from previous colon registration approaches based on global geometric information [1-4], this paper presents a feature selection and metric distance learning approach to build a pairwise matching function (where true pairs of polyp detections have smaller distances than false pairs), learned using local polyp classification features [5-7]. Thus our process can seamlessly handle collapsed colon segments or other severe structural artifacts which often exist in CTC, since only local features are used, whereas other global geometry dependent methods may become invalid for collapsed segmentation cases. Our automatic approach is extensively evaluated using a large multi-site dataset of 195 patient cases in training and 223 cases for testing. No external examination on the correctness of colon segmentation topology [2] is needed. The results show that we achieve significantly superior matching accuracy than previous methods [1-4], on at least one order-of-magnitude larger CTC datasets.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Lai, Z., Hu, J., Liu, C., Taimour, V., Pai, D., Zhu, J., Xu, J., Hua, J.: Intra-patient Supine-Prone Colon Registration in CT Colonography Using Shape Spectrum. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 332–339. Springer, Heidelberg (2010)
Roth, H., McClelland, J., Modat, M., Boone, D., Hu, M., Ourselin, S., Slabaugh, G., Halligan, S., Hawkes, D.: Establishing Spatial Correspondence between the Inner Colon Surfaces from Prone and Supine CT Colonography. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 497–504. Springer, Heidelberg (2010)
Wang, S., Yao, J., Liu, J., Petrick, N., Periaswamy, S., Summers, R.: Registration of Prone and Supine CT Colonography Scans Using Correlation Optimized Warping and Canonical Correlation Analysis. Medical Physics 36, 5595–5603 (2009)
Li, P., Napel, S., Acar, B., Paik, D., Jeffery, R., Beaulieu, C.: Registration of Central Paths and Colonic Polyps Between Supine and Prone Scans in Computed Tomography Tolonography: Pilot Study. Medical Physics 31, 2912–2923 (2004)
Mang, T., Bogoni, L., Salganicoff, M., Wolf, M.: CT Colonography: Retrospective Evaluation of the Performance of Computer-aided Detection of Colonic Polyps in Tagged and Untagged Preparation. In: European Congress of Radiology (2010)
Slabaugh, G., Yang, X., Ye, X., Boyes, R., Beddoe, G.: A Robust and Fast System for CTC Computer-Aided Detection of Colorectal Lesions. Algorithms 3(1) (2010)
van Ravesteijn, V., van Wijk, C., Vos, F., Truyen, R., Peters, J., Stoker, J., van Vliet, L.: Computer Aided Detection of Polyps in CT Colonography using Logistic Regression. IEEE Trans. on Med. Imag. 29, 120–131 (2010)
Peng, H., Long, F., Ding, C.: Feature Selection Based on Mutual Information: Criteria of Max-dependency, Max-relevance, and Min-redundancy. IEEE TPAMI, 1226–1238 (2005)
Xing, E., Ng, A., Jordan, M., Russell, S.: Distance Metric Learning, with Applicationto Clustering with Side-information. In: NIPS, vol. 15, pp. 505–512 (2002)
Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning a Mahalanobis Metric from Equivalence Constraints. J. Mach. Learn. Res. 6, 937–965 (2005)
Shen, C., Kim, J., Wang, L., van den Hengel, A.: Positive Semidefinite Metric Learning with Boosting. In: NIPS, pp. 1651–1659 (2009)
Freund, Y., Schapire, R.: A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. Comput. Learn. Theory (1995)
Lu, L., Wolf, M., Liang, J., Bi, J., Sagalnicoff, M.: A Two-Level Approach Towards Semantic Colon Segmentation: Removing Extra-Colonic Findings. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 1009–1016. Springer, Heidelberg (2009)
Davis, J., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-Theoretic Metric Learning. In: ICML, pp. 209–216 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, M., Lu, L., Bi, J., Raykar, V., Wolf, M., Salganicoff, M. (2011). Robust Large Scale Prone-Supine Polyp Matching Using Local Features: A Metric Learning Approach. In: Fichtinger, G., Martel, A., Peters, T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6893. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23626-6_10
Download citation
DOI: https://doi.org/10.1007/978-3-642-23626-6_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23625-9
Online ISBN: 978-3-642-23626-6
eBook Packages: Computer ScienceComputer Science (R0)