Abstract
Despite the growing interest in regression based shape estimation, no study has yet systematically compared different regression methods for shape estimation. We aimed to fill this gap by comparing linear regression methods with a special focus on shapes with landmark position uncertainties. We investigate two scenarios: In the first, the uncertainty of the landmark positions was similar in the training and test dataset, whereas in the second the uncertainty of the training and test data were different. Both scenarios were tested on simulated data and on statistical models of the left ventricle estimating the end-systolic shape from end-diastole with landmark uncertainties derived from the segmentation process, and of the femur estimating the 3D shape from one projection with landmark uncertainties derived from the imaging setup. Results show that in the first scenario linear regression methods tend to perform similar. In the second scenario including estimates of the test shape landmark uncertainty in the regression improved results.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Ablitt, N.A., Gao, J., Keegan, J., Stegger, L., Firmin, D.N., Yang, G.Z.: Predictive cardiac motion modeling and correction with partial least squares regression. IEEE Trans. Med. Imaging 23(10), 1315–1324 (2004)
Baka, N., de Bruijne, M., Niessen, W., Reiber, J.H.C., Lelieveldt, B.: Confidence of model based shape reconstruction from sparse data. In: IEEE ISBI (2010)
Blanc, R., Syrkina, E., Székely, G.: Estimating the confidence of statistical model based shape prediction. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp. 602–613. Springer, Heidelberg (2009)
de Bruijne, M., Lund, M.T., Tankó, L.B., Pettersen, P.C., Nielsen, M.: Quantitative vertebral morphometry using neighbor-conditional shape models. Med. Image Anal. 11(5), 503–512 (2007)
Ferrarini, L., Olofsen, H., Palm, W., van Buchem, M., Reiber, J., Admiraal-Behloul, F.: Games: growing and adaptive meshes for fully automatic shape modeling and analysis. Med. Image Anal. 11, 302–314 (2007)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning (Data mining, Inference, and Prediction). Springer, Heidelberg (2009)
Klinder, T., Lorenz, C., Ostermann, J.: Prediction framework for statistical respiratory motion modeling. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. A. (eds.) MICCAI 2010. LNCS, vol. 6363, pp. 327–334. Springer, Heidelberg (2010)
Liu, T., Shen, D., Davatzikos, C.: Predictive Modeling of Anatomic Structures Using Canonical Correlation Analysis. In: IEEE ISBI, pp. 1279–1282 (2004)
Metz, C., Baka, N., Kirisli, H., Schaap, M., van Walsum, T., Klein, S., Neefjes, L., Mollet, N., Lelieveldt, B., de Bruijne, M., Niessen, W.: Conditional shape models for cardiac motion estimation. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 452–459. Springer, Heidelberg (2010)
Rajamani, K.T., Styner, M.A., Talib, H., Zheng, G., Nolte, L.P., Ballester, M.A.: Statistical deformable bone models for robust 3d surface extrapolation from sparse data. Medical Image Analysis 11(2), 99–109 (2007)
Rao, A., Aljabar, P., Rueckert, D.: Hierarchical statistical shape analysis and prediction of sub-cortical brain structures. Med. Image Anal. 12(1), 55–68 (2008)
Reis, M.S., Saraiva, P.M.: A comparative study of linear regression methods in noisy environments. J. Chemometrics 18, 526–536 (2004)
Wentzell, P.D., Andrews, D.T., Hamilton, D.C., Klaas, F., Kowalski, B.R.: Maximum likelihood principal component analysis. Chemometrics 11, 339–366 (1997)
Yang, Y.M., Rueckert, D., Bull, A.M.J.: Predicting the Shapes of Bones at a Joint: Application to the Shoulder. Computer Methods in Biomechanics and Biomedical Engineering 11(1), 19–30 (2008)
Zheng, G., Gollmer, S., Schumann, S., Dong, X., Feilkas, T., Ballester, M.A.G.: A 2d/3d correspondence building method for reconstruction of a patient-specific 3d bone surface model using point distribution models and calibrated x-ray images. Med. Image Anal. 13(6), 883–899 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baka, N., Metz, C., Schaap, M., Lelieveldt, B., Niessen, W., de Bruijne, M. (2011). Comparison of Shape Regression Methods under Landmark Position Uncertainty. In: Fichtinger, G., Martel, A., Peters, T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23629-7_53
Download citation
DOI: https://doi.org/10.1007/978-3-642-23629-7_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23628-0
Online ISBN: 978-3-642-23629-7
eBook Packages: Computer ScienceComputer Science (R0)