Abstract
In this paper we propose a novel approach for incorporating measures of spatial uncertainty, which are derived from non-rigid registration, into spatially normalised statistics. Current approaches to spatially normalised statistical analysis use point-estimates of the registration parameters. This is limiting as the registration will rarely be completely accurate, and therefore data smoothing is often used to compensate for the uncertainty of the mapping. We derive localised measurements of spatial uncertainty from a probabilistic registration framework, which provides a principled approach to image smoothing. We evaluate our method using longitudinal deformation features from a set of MR brain images acquired from the Alzheimer’s Disease Neuroimaging Initiative. These images are spatially normalised using our probabilistic registration algorithm. The spatially normalised longitudinal features are adaptively smoothed according to the registration uncertainty. The proposed adaptive smoothing shows improved classification results, (84% correct Alzheimer’s Disease vs. controls), over either not smoothing (79.6%), or using a Gaussian filter with σ = 2mm (78.8%).
Chapter PDF
Similar content being viewed by others
Keywords
- Mild Cognitive Impairment
- Gaussian Smoothing
- Spatial Uncertainty
- Adaptive Smoothing
- Variational Free Energy
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Allassonniére, S., Amit, Y., Trouvè, A.: Toward a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society, Series B 69(2) (2007)
Ashburner, J.: A fast diffeomorphic image registration algorithm. Neuroimage 38(1), 95–113 (2007)
Attias, H.: A variational Bayesian framework for graphical models. In: Leen, T., Dietterich, T., Tresp, V. (eds.) NIPS 2000, vol. 12, pp. 209–215. MIT Press, Cambridge (2000)
Groves, A.R., Beckmann, C.F., Smith, S.M., Woolrich, M.W.: Linked independent component analysis for multimodal data fusion. NeuroImage 54(3), 2198–2217 (2011)
Klein, A., Andersson, J., Ardekani, B., Ashburner, J., Avants, B., Chiang, M., Christensen, G., Collins, D., Gee, J., Hellier, P., Song, J., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R., Mann, J., Parsey, R.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)
Leow, A., Yanovsky, I., Parikshak, N., Hua, X., Lee, S., Toga, A., Jack Jr., C., Bernstein, M., Britson, P., Gunter, J., Ward, C., Borowski, B., Shaw, L., Trojanowski, J., Fleisher, A., Harvey, D., Kornak, J., Schuff, N., Alexander, G., Weiner, M., Thompson, P.: Alzheimer’s disease neuroimaging initiative: a one-year follow up study using tensor-based morphometry correlating degenerative rates, biomarkers and cognition. Neuroimage 45(3), 645–655 (2009)
Mueller, S., Weiner, M., Thal, L., Petersen, R., Jack, C., Jagust, W., Trojanowski, J., Toga, A., Beckett, L.: Alzheimer’s Disease Neuroimaging Initiative. Advances in Alzheimer’s and Parkinson’s Disease, 183–189 (2008)
Risholm, P., Pieper, S., Samset, E., Wells, W.: Summarizing and visualizing uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J., Viergever, M. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 554–561. Springer, Heidelberg (2010)
Scahill, R., Schott, J., Stevens, J., Rossor, M., Fox, N.: Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proceedings of the National Academy of Sciences of the United States of America 99(7), 4703 (2002)
Simpson, I., Woolrich, M., Schnabel, J.: Probabilistic segmentation propagation. In: Medical Image Understanding and Analysis 2011 (2011)
Smith, S., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P., Federico, A., De Stefano, N.: Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage 17(1), 479–489 (2002)
Szeliski, R.: Bayesian modeling of uncertainty in low-level vision. International Journal of Computer Vision 5(3), 271–301 (1990)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Simpson, I.J.A., Woolrich, M., Groves, A.R., Schnabel, J.A. (2011). Longitudinal Brain MRI Analysis with Uncertain Registration. In: Fichtinger, G., Martel, A., Peters, T. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2011. MICCAI 2011. Lecture Notes in Computer Science, vol 6892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23629-7_79
Download citation
DOI: https://doi.org/10.1007/978-3-642-23629-7_79
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23628-0
Online ISBN: 978-3-642-23629-7
eBook Packages: Computer ScienceComputer Science (R0)