Abstract
Many cumulative problems are such that the horizon is fixed and cannot be delayed. In this situation, it often occurs that all the activities cannot be scheduled without exceeding the capacity at some points in time. Moreover, this capacity is not necessarily always the same during the scheduling period. This article introduces a new constraint for solving this class of problems. We adapt two filtering algorithms to our context: Sweep and P. Vilím’s Edge-Finding algorithm. We emphasize that in some problems violations are imposed. We design a new filtering procedure specific to this kind of events. We introduce a search heuristic specific to our constraint. We successfully experiment our constraint.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Choco: An open source Java CP library (2011), http://choco.mines-nantes.fr
Aggoun, A., Beldiceanu, N.: Extending CHIP in order to solve complex scheduling and placement problems. Mathl. Comput. Modelling 17(7), 57–73 (1993)
Beldiceanu, N., Carlsson, M.: Revisiting the cardinality operator and introducing the cardinality-path constraint family. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp. 59–73. Springer, Heidelberg (2001)
Beldiceanu, N., Carlsson, M.: A new multi-resource cumulatives constraint with negative heights. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 63–79. Springer, Heidelberg (2002)
Hebrard, E., O’Sullivan, B., Razgon, I.: A soft constraint of equality: Complexity and approximability. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 358–371. Springer, Heidelberg (2008)
Lahrichi, A.: The notions of Hump, Compulsory Part and their use in Cumulative Problems. C.R. Acad. sc., t. 294, 209–211 (1982)
Larrosa, J., Schiex, T.: Solving weighted csp by maintaining arc consistency. Artificial Intelligence 159(1-2), 1–26 (2004)
Pesant, G., Régin, J.-C.: Spread: A balancing constraint based on statistics. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 460–474. Springer, Heidelberg (2005)
Petit, T., Poder, E.: Global propagation of side constraints for solving over-constrained problems. Annals OR 184(1), 295–314 (2011)
Petit, T., Régin, J.-C.: The ordered distribute constraint. In: ICTAI, pp. 431–438 (2010)
Petit, T., Régin, J.-C., Bessière, C.: Meta constraints on violations for over constrained problems. In: Proc. IEEE-ICTAI, pp. 358–365 (2000)
Schaus, P., Deville, Y., Dupont, P.E., Régin, J.-C.: The deviation constraint. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 260–274. Springer, Heidelberg (2007)
Vilím, P.: Edge finding filtering algorithm for discrete cumulative resources in O(knlog(n)). In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 802–816. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
De Clercq, A., Petit, T., Beldiceanu, N., Jussien, N. (2011). Filtering Algorithms for Discrete Cumulative Problems with Overloads of Resource. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)