Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

This paper tackles the problem of deciding whether a given clause belongs to some minimally unsatisfiable subset (MUS) of a formula, where the formula is in conjunctive normal form (CNF) and unsatisfiable. Deciding MUS-membership helps the understanding of why a formula is unsatisfiable. If a clause does not belong to any MUS, then removing it will certainly not contribute to restoring the formula’s consistency. Unsatisfiable formulas and consistency restoration in particular have a number of practical applications in areas such as software verification or product configuration. The MUS-membership problem is known to be in the second level of polynomial hierarchy, more precisely it is \(\Sigma{^p_2}\) -complete. Hence, quantified Boolean formulas (QBFs) represent a possible avenue for tackling the problem. This paper develops a number of novel QBF formulations of the MUS-membership problem and evaluates their practicality using modern off-the-shelf solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cadoli, M., Lenzerini, M.: The complexity of closed world reasoning and circumscription. In: AAAI Conference on Artificial Intelligence, pp. 550–555 (1990)

    Google Scholar 

  2. Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find minimal unsatisfiable subformulas in satisfiability problems. J. Comb. Optim. 18(2), 124–150 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world reasoning are \(\Pi^P_2\)-complete. Theor. Comput. Sci. 114(2), 231–245 (1993)

    Article  MATH  Google Scholar 

  4. Feldmann, R., Monien, B., Schamberger, S.: A distributed algorithm to evaluate quantified Boolean formulae. In: AAAI/IAAI, pp. 285–290 (2000)

    Google Scholar 

  5. Giunchiglia, E., Marin, P., Narizzano, M.: An effective preprocessor for QBF pre-reasoning. In: 2nd International Workshop on Quantification in Constraint Programming, QiCP (2008)

    Google Scholar 

  6. Grégoire, É., Mazure, B., Piette, C.: On approaches to explaining infeasibility of sets of Boolean clauses. In: International Conference on Tools with Artificial Intelligence, pp. 74–83 (November 2008)

    Google Scholar 

  7. Grégoire, E., Mazure, B., Piette, C.: Does this set of clauses overlap with at least one MUS? In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 100–115. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction refinement algorithm for propositional circumscription. In: Proceeding of the 12th European Conference on Logics in Artificial Intelligence, JELIA (2010)

    Google Scholar 

  9. Janota, M., Marques-Silva, J.: Abstraction-based algorithm for 2QBF. In: Sakallah, Simon (eds.) [23]

    Google Scholar 

  10. Janota, M., Marques-Silva, J.: cmMUS: a circumscription-based tool for MUS membership testing. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 266–271. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Kullmann, O.: An application of matroid theory to the SAT problem. In: IEEE Conference on Computational Complexity, pp. 116–124 (2000)

    Google Scholar 

  12. Kullmann, O.: Constraint satisfaction problems in clausal form: Autarkies and minimal unsatisfiability. ECCC 14(055) (2007)

    Google Scholar 

  13. Liberatore, P.: Redundancy in logic I: CNF propositional formulae. Artif. Intell. 163(2), 203–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reasoning 40(1), 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lifschitz, V.: Some results on circumscription. In: NMR, pp. 151–164 (1984)

    Google Scholar 

  16. Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms. In: Sakallah, Simon (eds.) [23]

    Google Scholar 

  17. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell. 13(1-2), 27–39 (1980)

    Article  MATH  Google Scholar 

  18. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential space. In: Switching and Automata Theory (1972)

    Google Scholar 

  19. Minker, J.: On indefinite databases and the closed world assumption. In: Conference on Automated Deduction, pp. 292–308 (1982)

    Google Scholar 

  20. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations for interactive constraint satisfaction. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 445–459. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Papadimitriou, C.H., Wolfe, D.: The complexity of facets resolved. J. Comput. Syst. Sci. 37(1), 2–13 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Papadopoulos, A., O’Sullivan, B.: Relaxations for compiled over-constrained problems. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 433–447. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Sakallah, K.A., Simon, L. (eds.): The 14th International Conference on Theory and Applications of Satisfiability Testing (SAT). Springer, Heidelberg (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Janota, M., Marques-Silva, J. (2011). On Deciding MUS Membership with QBF. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics