Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6876))

Abstract

We study the (non-uniform) quantified constraint satisfaction problem QCSP\((\mathcal{H})\) as \(\mathcal{H}\) ranges over partially reflexive forests. We obtain a complexity-theoretic dichotomy: QCSP\((\mathcal{H})\) is either in NL or is NP-hard. The separating condition is related firstly to connectivity, and thereafter to accessibility from all vertices of \(\mathcal{H}\) to connected reflexive subgraphs. In the case of partially reflexive paths, we give a refinement of our dichotomy: QCSP\((\mathcal{H})\) is either in NL or is Pspace-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandelt, H.J., Dhlmann, A., Schtte, H.: Absolute retracts of bipartite graphs. Discrete Applied Mathematics 16(3), 191–215 (1987)

    Article  MathSciNet  Google Scholar 

  2. Bandelt, H.-J., Pesch, E.: Dismantling absolute retracts of reflexive graphs. Eur. J. Comb. 10, 211–220 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM Journal on Computing 38(5), 1782–1802 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Börner, F., Bulatov, A.A., Chen, H., Jeavons, P., Krokhin, A.A.: The complexity of constraint satisfaction games and qcsp. Inf. Comput. 207(9), 923–944 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Börner, F., Krokhin, A., Bulatov, A., and Jeavons, P. Quantified constraints and surjective polymorphisms. Tech. Rep. PRG-RR-02-11, Oxford University (2002)

    Google Scholar 

  6. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, H.: The complexity of quantified constraint satisfaction: Collapsibility, sink algebras, and the three-element case. SIAM J. Comput. 37(5), 1674–1701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H., Madelaine, F., Martin, B.: Quantified constraints and containment problems. In: 23rd Annual IEEE Symposium on Logic in Computer Science, pp. 317–328 (2008)

    Google Scholar 

  10. Dalmau, V., Krokhin, A.A.: Majority constraints have bounded pathwidth duality. Eur. J. Comb. 29(4), 821–837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing 28, 57–104 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golovach, P., Paulusma, D., Song, J.: Computing vertex-surjective homomorphisms to partially reflexive trees. In: Kulikov, A., Vereshchagin, N. (eds.) CSR 2011. LNCS, vol. 6651. Springer, Heidelberg (to appear, 2011)

    Google Scholar 

  13. Hell, P., Nešetřil, J.: On the complexity of H-coloring. Journal of Combinatorial Theory, Series B 48, 92–110 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Martin, B., Madelaine, F.: Towards a trichotomy for quantified H-coloring. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 342–352. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Patrignani, M., Pizzonia, M.: The complexity of the matching-cut problem. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of STOC 1978, pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martin, B. (2011). QCSP on Partially Reflexive Forests. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23786-7_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23785-0

  • Online ISBN: 978-3-642-23786-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics