Abstract
A Distributed Constraint Optimization Problem (DCOP) is a fundamental problem that can formalize various applications related to multi-agent cooperation. Since it is NP-hard, considering faster incomplete algorithms is necessary for large-scale applications. Most incomplete algorithms generally do not provide any guarantees on the quality of solutions. Some notable exceptions are DALO, the bounded max-sum algorithm, and ADPOP.
In this paper, we develop a new solution criterion called p-optimality and an incomplete algorithm for obtaining a p-optimal solution. The characteristics of this algorithm are as follows: (i) it can provide the upper bounds of the absolute/relative errors of the solution, which can be obtained a priori/a posteriori, respectively, (ii) it is based on a pseudo-tree, which is a widely used graph structure in complete DCOP algorithms, (iii) it is a one-shot type algorithm, which runs in polynomial-time in the number of agents n assuming p is fixed, and (iv) it has adjustable parameter p, so that agents can trade-off better solution quality against computational overhead. The evaluation results illustrate that this algorithm can obtain better quality solutions and bounds compared to existing bounded incomplete algorithms, while the run time of this algorithm is shorter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atlas, J., Warner, M., Decker, K.: A memory bounded hybrid approach to distributed constraint optimization. In: Proceedings of the 11th International Workshop on Distributed Constraint Reasoning, pp. 37–51 (2008)
Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)
Fitzpatrick, S., Meertens, L.: Distributed coordination through anarchic optimization. In: Lesser, V., Ortiz, C., Tambe, M. (eds.) Distributed Sensor Networks: A Multiagent Perspective, pp. 257–295. Kluwer Academic Publishers, Dordrecht (2003)
Kiekintveld, C., Yin, Z., Kumar, A., Tambe, M.: Asynchronous algorithms for approximate distributed constraint optimization with quality bounds. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 133–140 (2010)
Kjaerulff, U.: Reduction of computational complexity in bayesian networks through removal of weak dependences. In: Proceedings of the 10th International Conference on Uncertainty in Artificial Intelligence, pp. 374–382 (1994)
Léauté, T., Ottens, B., Szymanek, R.: FRODO 2.0: An open-source framework for distributed constraint optimization. In: Proceedings of the 12th International Workshop on Distributed Constraint Reasoning, pp. 160–164 (2009)
Mailler, R., Lesser, V.: Using cooperative mediation to solve distributed constraint satisfaction problems. In: Proceedings of the 3rd International Conference on Autonomous Agents and Multiagent Systems, pp. 446–453 (2004)
Modi, P., Shen, W.-M., Tambe, M., Yokoo, M.: ADOPT: asynchronous distributed constraint optimization with quality guarantees. Artificial Intelligence 161(1-2), 149–180 (2005)
Pearce, J., Tambe, M.: Quality guarantees on k-optimal solutions for distributed constraint optimization problems. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1446–1451 (2007)
Pearce, J., Tambe, M., Maheswaran, R.: Solving multiagent networks using distributed constraint optimization. AI Magazine 29(3), 47–66 (2008)
Petcu, A., Faltings, B.: Approximations in distributed optimization. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg (2005)
Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, pp. 266–271 (2005)
Rogers, A., Farinelli, A., Stranders, R., Jennings, N.: Bounded approximate decentralised coordination via the max-sum algorithm. Artificial Intelligence 175(2), 730–759 (2011)
van Engelen, R.A.: Approximating bayesian belief networks by arc removal. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 916–920 (1997)
Vinyals, M., Shieh, E., Cerquides, J., Rodriguez-Aguilar, J.A., Yin, Z., Tambe, M., Bowring, E.: Quality guarantees for region optimal DCOP algorithms. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, pp. 133–140 (2011)
Yin, Z.: USC dcop repository. University of Southern California, Department of Computer Science (2008)
Zhang, W., Wang, G., Xing, Z., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraint optimization problems in sensor networks. Artificial Intelligence 161(1-2), 55–87 (2005)
Zivan, R.: Anytime local search for distributed constraint optimization. In: Proceedings of the 23rd National Conference on Artificial Intelligence, pp. 393–398 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Okimoto, T., Joe, Y., Iwasaki, A., Yokoo, M., Faltings, B. (2011). Pseudo-Tree-Based Incomplete Algorithm for Distributed Constraint Optimization with Quality Bounds. In: Lee, J. (eds) Principles and Practice of Constraint Programming – CP 2011. CP 2011. Lecture Notes in Computer Science, vol 6876. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23786-7_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-23786-7_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23785-0
Online ISBN: 978-3-642-23786-7
eBook Packages: Computer ScienceComputer Science (R0)