Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pattern Mining on Ego-Centric Networks of Friendship Networks

  • Conference paper
Knowledge-Based and Intelligent Information and Engineering Systems (KES 2011)

Abstract

The paper proposes a procedure to analyse local patterns of connectivity among people in social networks using the idea of ego-centric network. The ego-centric networks of every nodes are transformed into normalized representation and classified into patterns. The procedure can be applied to large dataset by giving it in SQL code. We applied the procedure to friendship networks and demonstrated distinguished properties compared to other networks. We found out that friendship network contains large variety of patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barabási, A.-L., Albert, R.: Emergence of Scaling in Random Networks. Science 286, 509 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Inuzuka, N., Nakano, T., Shimomura, K.: Friendship Analysis Using Attendance Records to University Lecture Classes. In: Proc. IASK Int’l Conf. Teaching and Learning, pp. 478–486 (2008)

    Google Scholar 

  3. Klemm, K., Eguiluz, V.M.: Highly clustered scale-free networks. Physical Review E 65, 036123 (2002)

    Google Scholar 

  4. Matsushima, H., Kadosaka, S., Yamamoto, S., Inuzuka, N.: Analysis of Friendship Network Using Attendance Records to Lecture Classes. In: 30th Sunbelt Conf. (Tech. Rep., Inuzuka labo.) (2010)

    Google Scholar 

  5. Newman, M.E.J.: Ego-centered networks and the ripple effect -or- Why all your friends are wired. Social Network 25, 83–95 (2003)

    Article  Google Scholar 

  6. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Physical Review E 69, 026113 (2004)

    Google Scholar 

  7. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge U. Press, Cambridge (1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inuzuka, N., Takeuchi, S., Matsushima, H. (2011). Pattern Mining on Ego-Centric Networks of Friendship Networks. In: König, A., Dengel, A., Hinkelmann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based and Intelligent Information and Engineering Systems. KES 2011. Lecture Notes in Computer Science(), vol 6884. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23866-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23866-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23865-9

  • Online ISBN: 978-3-642-23866-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics