Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Manifold Ranking-Based Locality Preserving Projections

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7003))

Abstract

As a widely used linear dimensionality reduction technique, Locality Preserving Projections (LPP) preserves the neighborhood structure of the dataset by finding the optimal linear approximations to the eigenfunctions of the Laplace-Beltrami operator on the manifold, which makes it have several advantages of both linear and nonlinear methods. However, its neighborhood graph is generated by adopting the Euclidean distance as the similarity metric of different samples which leads to the unsatisfying effectiveness of LPP. To address the limitation of Euclidean distance we propose an improved LPP called Manifold Ranking-based LPP (MRLPP) which can effectively preserve the neighborhood structure of the dataset, either globular or non-globular. Experimental results on several datasets demonstrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimension Reduction: A Comparative Review. Technical Report, TiCC-TR 2009-005. Tilburg University (2009)

    Google Scholar 

  2. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  5. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  6. He, X., Niyogi, P.: Locality Preserving Projections. In: Advances in Neural Information Processing Systems, vol. 16, pp. 153–160. MIT Press, Cambridge (2004)

    Google Scholar 

  7. Zhou, D., Weston, J., Gretton, A., et al.: Ranking on Data Manifolds. In: Advances in Neural Information Processing Systems, vol. 16, pp. 169–176. MIT Press, Cambridge (2004)

    Google Scholar 

  8. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  9. Chatzichristofis, S.A., Boutalis, Y.S.: CEDD: Color and edge directivity descriptor: A compact descriptor for image indexing and retrieval. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 312–322. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository. School of Information and Computer Science. University of California, Irvine (2007), http://mlearn.ics.uci.edu/MLRepository.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wei, J., Chen, Z., Niu, P., Chen, Y., Chen, W. (2011). Manifold Ranking-Based Locality Preserving Projections. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7003. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23887-1_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23887-1_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23886-4

  • Online ISBN: 978-3-642-23887-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics