Abstract
This works presents an application of semantic compression where domain frequency dictionaries are used to augment comprehension of documents. This is achieved by incorporating user’s feedback into proposed solution. Experiments and examples of actual output are given. Moreover, a measure that allows for evaluation of changes in a structure of available groups is defined and presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ceglarek, D., Haniewicz, K., Rutkowski, W.: Semantically Enchanced Intellectual Property Protection System - SEIPro2S. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 449–459. Springer, Heidelberg (2009)
Ceglarek, D., Haniewicz, K., Rutkowski, W.: Semantic compression for specialised Information Retrieval systems. In: Nguyen, N.T., Katarzyniak, R., Chen, S.-M. (eds.) Advances in Intelligent Information and Database Systems. SCI, vol. 283, pp. 111–121. Springer, Heidelberg (2010)
Ceglarek, D., Haniewicz, K., Rutkowski, W.: Quality of semantic compression in classification. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6421, pp. 162–171. Springer, Heidelberg (2010)
Fellbaum, C.: WordNet - An Electronic Lexical Database. The MIT Press, USA (1998) ISBN: 978-0-262-06197-1
Percova, N.N.: On the types of semantic compression of text. In: Proc. of the 9th Conference on Computational Linguistics (COLING 1982), vol. 2, pp. 229–231. Academia Praha, Czechoslovakia (1982)
Krovetz, R., Croft, W.B.: Lexical ambiguity and information retrieval. ACM Transactions on Information Systems 10(2), 115–141 (1992)
Mihalcea, R., Csomai, A.: Senselearner: Word sense disambiguation for all words in unrestricted text. In: Proc. of the 43rd ACL, pp. 53–56 (2005)
Resnik, P.: Using information content to evaluate semantic similarity. In: Proc. of the 14th IJCAI, Canada, pp. 448–453 (1995)
Sinha, R., Mihalcea, R.: Unsupervised graphbased word sense disambiguation using measures of word semantic similarity. In: Proc. of the IEEE International Conference on Semantic Computing (2007)
Erk, K., Pado, S.: A structured vector space model for word meaning in context. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP 2008), pp. 897–906. Association for Computational Linguistics, Stroudsburg (2008)
Milkowski, M.: Automated Building of Error Corpora of Polish. In: Lewandowska-Tomaszczyk, B. (ed.) Corpus Linguistics, Computer Tools, and Applications - State of the Art. PALC 2007, Peter Lang. Internationaler Verlag der Wissenschaften, pp. 631–639 (2008)
Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston (1999)
Gordon, A.D.: Classification, 2nd edn. Chapman and Hall/CRC, USA (1999) ISBN: 978-1-58488-013-4
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ceglarek, D., Haniewicz, K., Rutkowski, W. (2011). Domain Based Semantic Compression for Automatic Text Comprehension Augmentation and Recommendation. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2011. Lecture Notes in Computer Science(), vol 6923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23938-0_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-23938-0_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23937-3
Online ISBN: 978-3-642-23938-0
eBook Packages: Computer ScienceComputer Science (R0)