Abstract
Cloud computing is a computation intensive service that clusters distributed computers providing applications as services and on-demand resources over Internet. Theoretically, such consolidated resource enhances the energy efficiency of both clients and servers. In reality, cloud computing is a panacea for enhancing energy efficiency under some certain conditions. For a user of cloud services, the computing resources are located at remote machines. Pioneers in exploring cloud computing, such as Google, AmazonWeb, Microsoft Azure, Yahoo, and IBM all use web pages as service interface via HTTP protocol. Through appropriated designs, sorting, one of the most frequently used algorithms, required by a web page can be executed and succeed by either clients or servers. As the model proposed in this paper, such client-server balanced computing allocation suggests a more energy-efficient and cost-effective web service.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Forrester research - marketing and strategy data (2008), http://www.forrester.com/consumerdata/overview
Internet world stats - world internet users and population stats (2010), http://internetworldstats.com/stats.htm
Nuclear energy institute - u.s. nuclear power plants (2011), http://www.nei.org/resourcesandstats/nuclear_statistics
Ayala, J.L., Veidenbaum, A., Lpez-Vallejo, M.: Power-aware compilation for register file energy reduction. International Journal of Parallel Programming 31, 451–467 (2003), http://dx.doi.org/10.1023/B:IJPP.0000004510.66751.2e , doi:10.1023/B:IJPP.0000004510.66751.2e
Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Computer 40(12), 33–37 (2007), http://doi.ieeecomputersociety.org/10.1109/MC.2007.443
Berl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M., Pentikousis, K.: Energy-efficient cloud computing. The Computer Journal 53(7), 1045 (2010)
Bianchini, R., Rajamony, R.: Power and energy management for server systems. Computer 37(11), 68–76 (2004)
Bunse, C., Höpfner, H., Roychoudhury, S., Mansour, E.: Choosing the best sorting algorithm for optimal energy consumption? In: Proceedings of the International Conference on Software and Data Technologies (ICSOFT), pp. 199–206 (2009)
Elnozahy, E., Kistler, M., Rajamony, R.: Energy-efficient server clusters. Power-Aware Computer Systems, 179–197 (2003)
Hamilton, J.: Cooperative expendable micro-slice servers (CEMS): low cost, low power servers for internet-scale services. In: Conference on Innovative Data Systems Research (CIDR 2009), Citeseer (January 2009)
Knuth, D.E.: The Art of Computer Programming, Sorting and Searching, 2nd edn., vol. 3. Addison-Wesley, Reading (1998)
Rusu, C., Ferreira, A., Scordino, C., Watson, A.: Energy-efficient real-time heterogeneous server clusters. In: Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications Symposium, pp. 418–428. IEEE, Los Alamitos (2006)
Schmidt, D., Wehn, N.: Dram power management and energy consumption: a critical assessment. In: Proceedings of the 22nd Annual Symposium on Integrated Circuits and System Design: Chip on the Dunes, SBCCI 2009, pp. 32:1–32:5. ACM, New York (2009), http://doi.acm.org/10.1145/1601896.1601937
Siegmund, N., Rosenmüller, M., Apel, S.: Automating energy optimization with features. In: Proceedings of the 2nd International Workshop on Feature-Oriented Software Development, FOSD 2010, pp. 2–9. ACM, New York (2010), http://doi.acm.org/10.1145/1868688.1868690
Skiena, S.S.: The Algorithm Design Manual, 2nd edn. Springer, Heidelberg (2008)
Zedlewski, J., Sobti, S., Garg, N., Zheng, F., Krishnamurthy, A., Wang, R.: Modeling hard-disk power consumption. In: Proceedings of the 2nd USENIX Conference on File and Storage Technologies, pp. 217–230. USENIX Association (2003)
Zhong, S., Shen, Y., Hao, F.: Tuning compiler optimization options via simulated annealing. In: Second International Conference on Future Information Technology and Management Engineering, FITME 2009, pp. 305–308 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Tang, CJ., Dai, MR. (2011). Energy Cost-Effectiveness of Cloud Service Datacenters. In: Chang, RS., Kim, Th., Peng, SL. (eds) Security-Enriched Urban Computing and Smart Grid. SUComS 2011. Communications in Computer and Information Science, vol 223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23948-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-23948-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23947-2
Online ISBN: 978-3-642-23948-9
eBook Packages: Computer ScienceComputer Science (R0)