Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unsupervised Activity Extraction on Long-Term Video Recordings Employing Soft Computing Relations

  • Conference paper
Computer Vision Systems (ICVS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6962))

Included in the following conference series:

  • 1063 Accesses

Abstract

In this work we present a novel approach for activity extraction and knowledge discovery from video employing fuzzy relations. Spatial and temporal properties from detected mobile objects are modeled with fuzzy relations. These can then be aggregated employing typical soft-computing algebra. A clustering algorithm based on the transitive closure calculation of the fuzzy relations allows finding spatio-temporal patterns of activity. We present results obtained on videos corresponding to different sequences of apron monitoring in the Toulouse airport in France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anjum, N., Cavallaro, A.: Single camera calibration for trajectory-based behavior analysis. In: AVSS 2007, IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 147–152 (2007)

    Google Scholar 

  2. Bashir, F., Khokhar, A., Schonfeld, D.: Object Trajectory-Based Activity Classification and Recognition Using Hidden Markov Models. IEEE Transactions on Image Processing 16, 1912–1919 (2007)

    Article  MathSciNet  Google Scholar 

  3. Doulamis, A.: A fuzzy video content representation for video summarization and content-based retrieval. Signal Processing 80(6), 1049–1067 (2000)

    Article  MATH  Google Scholar 

  4. Dubba, K.S.R., Cohn, A.G., Hogg, D.C.: Event model learning from complex videos using ilp. In: Proceeding of ECAI 2010, the 19th European Conference on Artificial Intelligence, pp. 93–98 (2010)

    Google Scholar 

  5. Foresti, G., Micheloni, C., Snidaro, L.: Event classification for automatic visual-based surveillance of parking lots. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 3, pp. 314–317. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  6. Lee, S.W., Mase, K.: Activity and Location Recognition Using Wearable Sensors. IEEE Pervasive Computing 1(03), 24–32 (2002)

    Article  Google Scholar 

  7. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of 7th International Joint Conference on Artificial Intelligence (IJCAI), pp. 674–679 (1981)

    Google Scholar 

  8. Lv, F., Song, X., Wu, B., Singh, V., Nevatia, R.: Left luggage detection using bayesian inference. In: Proceedings of the 9th IEEE International Workshop (2006)

    Google Scholar 

  9. Piciarelli, C., Foresti, G., Snidaro, L.: Trajectory clustering and its applications for video surveillance. In: Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance, AVSS 2005, vol. 18, pp. 40–45. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  10. Porikli, F.: Learning object trajectory patterns by spectral clustering. In: 2004 IEEE International Conference on Multimedia and Expo (ICME), vol. 2, pp. 1171–1174. IEEE, Los Alamitos (2004)

    Chapter  Google Scholar 

  11. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 593–600 (1994)

    Google Scholar 

  12. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  13. Wilson, A.D., Bobick, A.F.: Hidden Markov models for modeling and recognizing gesture under variation. International Journal of Pattern Recognition and Artificial Intelligence 15, 123–160 (2001)

    Article  Google Scholar 

  14. Xiang, T., Gong, S.: Video behaviour profiling and abnormality detection without manual labelling. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 2 (2005)

    Google Scholar 

  15. Zadeh, L.: Similarity relations and fuzzy ordering. Information sciences 3, 159–176 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zivkovic, Z.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patino, L., Evans, M., Ferryman, J., Bremond, F., Thonnat, M. (2011). Unsupervised Activity Extraction on Long-Term Video Recordings Employing Soft Computing Relations. In: Crowley, J.L., Draper, B.A., Thonnat, M. (eds) Computer Vision Systems. ICVS 2011. Lecture Notes in Computer Science, vol 6962. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23968-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23968-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23967-0

  • Online ISBN: 978-3-642-23968-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics