Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 387))

Abstract

We present an analysis of the behaviour of Cooperative Co-evolution algorithms (CCEAs) on a simple test problem, that is the optimal placement of a set of lamps in a square room, for various problems sizes. Cooperative Co-evolution makes it possible to exploit more efficiently the artificial Darwinism scheme, as soon as it is possible to turn the optimisation problem into a co-evolution of interdependent sub-parts of the searched solution. We show here how two cooperative strategies, Group Evolution (GE) and Parisian Evolution (PE) can be built for the lamps problem. An experimental analysis then compares a classical evolution to GE and PE, and analyses their behaviour with respect to scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amaya, J.E., Cotta, C., Leiva, A.J.F.: A memetic cooperative optimization schema and its application to the tool switching problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 445–454. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Barrire, O., Lutton, E., Wuillemin, P.H.: Bayesian network structure learning using cooperative coevolution. In: Genetic and Evolutionary Computation Conference, GECCO 2009 (2009)

    Google Scholar 

  3. Bongard, J., Lipson, H.: Active coevolutionary learning of deterministic finite automata. Journal of Machine Learning Research 6, 1651–1678 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Boumaza, A.M., Louchet, J.: Dynamic flies: Using real-time parisian evolution in robotics. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 288–297. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Bucci, A., Pollacj, J.B.: On identifying global optima in cooperative coevolution. In: Proceedings of the 2005 Conference on Genetic and Evolutionary, Washington DC, USA (2005)

    Google Scholar 

  6. Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 300–309. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar ifs + parisian genetic programming = efficient ifs inverse problem solving. Genetic Programming and Evolvable Machines Journal 1(4), 339–361 (2000)

    Article  MATH  Google Scholar 

  8. De Jong, E.D., Stanley, K.O., Wiegand, R.P.: Introductory tutorial on coevolution. In: Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation, London, United Kingdom (2007)

    Google Scholar 

  9. Dunn, E., Olague, G., Lutton, E.: Automated photogrammetric network design using the parisian approach. In: EvoIASP 2005, Lausanne, nominated for the best paper Award (2005)

    Google Scholar 

  10. Landrin-Schweitzer, Y., Collet, P., Lutton, E.: Introducing lateral thinking in search engines. GPEM, Genetic Programming an Evolvable Hardware Journal 1(7), 9–31 (2006); Banzhaf, W., et al (eds.)

    Article  Google Scholar 

  11. Lutton, E., Olague, G.: Parisian camera placement for vision metrology. Pattern Recognition Letters 27(11), 1209–1219 (2006)

    Article  Google Scholar 

  12. Ochoa, G., Lutton, E., Burke, E.K.: Cooperative royal road functions. In: Evolution Artificielle, Tours, France, October 29-31 (2007)

    Google Scholar 

  13. Panait, L., Luke, S., Harrison, J.F.: Archive-based cooperative coevolutionary algorithms. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA (2006)

    Google Scholar 

  14. Popovici, E., De Jong, K.: The effects of interaction frequency on the optimization performance of cooperative coevolution. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA (2006)

    Google Scholar 

  15. Potter, M.A., Couldrey, C.: A cooperative coevolutionary approach to partitional clustering. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 374–383. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Sanchez, E., Schillaci, M., Squillero, G.: Evolutionary Optimization: the μGP toolkit, 1st edn. Springer, Heidelberg (2011)

    Book  Google Scholar 

  17. Sanchez, E., Squillero, G., Tonda, A.: Group evolution: Emerging synergy through a coordinated effort. In: Proceedings of the 2011 IEEE Congress of Evolutionary Computation, CEC (2011)

    Google Scholar 

  18. Vidal, F.P., Louchet, J., Rocchisani, J.-M., Lutton, É.: New genetic operators in the fly algorithm: Application to medical PET image reconstruction. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 292–301. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Wiegand, R.P., Potter, M.A.: Robustness in cooperative coevolution. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, Seattle, Washington, USA (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tonda, A., Lutton, E., Squillero, G. (2011). Lamps: A Test Problem for Cooperative Coevolution. In: Pelta, D.A., Krasnogor, N., Dumitrescu, D., Chira, C., Lung, R. (eds) Nature Inspired Cooperative Strategies for Optimization (NICSO 2011). Studies in Computational Intelligence, vol 387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24094-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24094-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24093-5

  • Online ISBN: 978-3-642-24094-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics