Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Measure of Logical Inference and Its Game Theoretical Applications

  • Conference paper
Logic, Rationality, and Interaction (LORI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6953))

Included in the following conference series:

  • 991 Accesses

Abstract

This paper presents a measure of inference in classical and intuitionistic logics in the Gentzen-style sequent calculus. The definition of the measure takes two steps: First, we measure the width of a given proof. Then the measure of inference assigns, to a given sequent, the minimum value of the widths of its possible proofs. It counts the indispensable cases for possible proofs of a sequent. This measure expresses the degree of difficulty in proving a given sequent. Although our problem is highly proof-theoretic, we are motivated by some general and specific problems in game theory/economics. In this paper, we will define a certain lower bound function, with which we may often obtain the exact value of the measure for a given sequent. We apply our theory a few game theoretical problems and calculate the exact values of the measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Buss, S.R.: Polynomial size proofs of the propositional pigeonhole principle. J. Symbolic Logic 52(4), 916–927 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gentzen, G.: Untersuchungen über das logische Schließen. I. Math. Z. 39(1), 176–210 (1935); english translation, ibid

    Article  MathSciNet  MATH  Google Scholar 

  3. Gentzen, G.: Untersuchungen über das logische Schließen. II. Math. Z. 39(1), 405–431 (1935); english translation, Investigations into Logical Deduction, The Collected Papers of Gerhard Gentzen (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kaneko, M., Kline, J.J.: Inductive game theory: a basic scenario. J. Math. Econom. 44(12), 1332–1363 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Kaneko, M., Nagashima, T.: Game logic and its applications. I. Studia Logica 57(2-3), 325–354 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kaneko, M., Suzuki, N.Y.: Epistemic models of shallow depths and decision making in games: Horticulture. J. Symbolic Logic 68(1), 163–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kaneko, M., Suzuki, N.Y.: Contentwise complexity of inferences in epistemic logics of shallow depths ii: Ec-sequents (2005); mimeo

    Google Scholar 

  8. Kaneko, M., Suzuki, N.Y.: Contentwise complexity: An evaluation of arrow’s impossibility theorem (2008); mimeo

    Google Scholar 

  9. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. In: Encyclopedia of Mathematics and its Applications, vol. 60. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  10. Pudlák, P.: The lengths of proofs. In: Handbook of Proof Theory, Stud. Logic Found. Math., vol. 137, pp. 547–637. North-Holland, Amsterdam (1998)

    Chapter  Google Scholar 

  11. Simon, H.A.: A behavioral model of rational choice. The Quarterly Journal of Economics 69(1), 99–118 (1955)

    Article  Google Scholar 

  12. Urquhart, A.: The complexity of Gentzen systems for propositional logic. Theoret. Comput. Sci. 66(1), 87–97 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaneko, M., Suzuki, NY. (2011). A Measure of Logical Inference and Its Game Theoretical Applications. In: van Ditmarsch, H., Lang, J., Ju, S. (eds) Logic, Rationality, and Interaction. LORI 2011. Lecture Notes in Computer Science(), vol 6953. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24130-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24130-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24129-1

  • Online ISBN: 978-3-642-24130-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics