Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Constructing an Optimal Decision Tree for FAST Corner Point Detection

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6954))

Included in the following conference series:

Abstract

In this paper, we consider a problem that is originated in computer vision: determining an optimal testing strategy for the corner point detection problem that is a part of FAST algorithm [11,12]. The problem can be formulated as building a decision tree with the minimum average depth for a decision table with all discrete attributes. We experimentally compare performance of an exact algorithm based on dynamic programming and several greedy algorithms that differ in the attribute selection criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Breiman, L., et al.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  2. Breitbart, Y., Reiter, A.: A branch-and-bound algorithm to obtain an optimal evaluation tree for monotonic boolean functions. Acta Inf. 4, 311–319 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chakaravarthy, V.T., et al.: Decision trees for entity identification: approximation algorithms and hardness results. In: Proceedings of the 26-th ACM Symposium on Principles of Database Systems, pp. 53–62. ACM, New York (2007)

    Google Scholar 

  4. Garey, M.R.: Optimal binary identification procedures. SIAM Journal on Applied Mathematics 23, 173–186 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heeringa, B., Adler, M.: Approximating optimal binary decision trees. Tech. Rep. 05-25, University of Massachusetts, Amherst (2005)

    Google Scholar 

  6. Hyafil, L., Rivest, R.: Constructing optimal binary decision trees is NP-complete. Information Processing Letters 5, 15–17 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Moret, B.E., Thomason, M., Gonzalez, R.C.: The activity of a variable and its relation to decision trees. ACM Trans. Program. Lang. Syst. 2, 580–595 (1980)

    Article  Google Scholar 

  8. Moshkov, M.J.: Decision trees. Theory and applications Nizhni Novgorod University Publishers (1994) (in Russain)

    Google Scholar 

  9. Moshkov, M.J., Chikalov, I.V.: Consecutive optimization of decision trees concerning various complexity measures. Fundam. Inf. 61, 87–96 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  11. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1508–1511 (2005)

    Google Scholar 

  12. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Schumacher, H., Sevcik, K.C.: The synthetic approach to decision table conversion. Commun. ACM 19, 343–351 (1976)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alkhalid, A., Chikalov, I., Moshkov, M. (2011). Constructing an Optimal Decision Tree for FAST Corner Point Detection. In: Yao, J., Ramanna, S., Wang, G., Suraj, Z. (eds) Rough Sets and Knowledge Technology. RSKT 2011. Lecture Notes in Computer Science(), vol 6954. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24425-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24425-4_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24424-7

  • Online ISBN: 978-3-642-24425-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics