Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel DE-ABC-Based Hybrid Algorithm for Global Optimization

  • Conference paper
Bio-Inspired Computing and Applications (ICIC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6840))

Included in the following conference series:

Abstract

A novel hybrid swarm intelligent algorithm DEABC, integrating differential evolution (DE) and artificial bee colony (ABC) algorithm, is proposed in this paper. By using global information obtained form DE population and bee colony, the exploration and exploitation abilities of DEABC algorithm are balanced. The DE population uses the global best to generate offspring every generation. The bee colony acquires the best individual after few generations. The experiments are performed on six benchmark functions to compare the efficiencies of DE, ABC, PSO and DEABC. The numerical results indicate the proposed algorithm outperforms other algorithms in terms of accuracy and convergence speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report TR06 (2005)

    Google Scholar 

  2. Karaboga, D., Ozturk, C.: A Novel Clustering Approach: Artificial Bee Colony (ABC) Algorithm. Applied Soft Computing 11, 652–657 (2011)

    Article  Google Scholar 

  3. Karaboga, D., Basturk, B.: Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 789–798. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Zhao, H.Y., Pei, Z.L., Jiang, J.Q., Guan, R.C., Wang, C.Y., Shi, X.H.: A Hybrid Swarm Intelligent Method Based on Genetic Algorithm and Artificial Bee Colony. In: Tan, Y., Shi, Y., Tan, K.C. (eds.) ICSI 2010. LNCS, vol. 6145, pp. 558–565. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Shi, X.H., Li, Y.W., Li, H.J., Guan, R.C., Wang, L.P., Liang, Y.C.: An Integrated Algorithm Based on Artificial Bee Colony Optimization and Particle Swam Optimization. In: 2010 Sixth International Conference on Natural Computation (ICNC), pp. 2586–2590. IEEE Press, Yantai (2010)

    Chapter  Google Scholar 

  6. Akay, B., Karaboga, D.: A Modified Artificial Bee Colony Algorithm for Real-Parameter Optimization. Information Sciences, 1–23 (2010)

    Google Scholar 

  7. Price, K.V.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F., Dasgupta, D., Moscato, P., Poli, R., Price, K.V. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd., London (1999)

    Google Scholar 

  8. Storn, R.: On the Usage of Differential Evolution for Function Optimization. In: Biennial Conference of the North American on Fuzzy Information Processing Society, pp. 519–523. IEEE Press, Berkeley (1996)

    Chapter  Google Scholar 

  9. Niu, B., Zhu, Y.L., He, X.X.: MCPSO: A Multi-Swarm Cooperative Particle Swarm Optimizer. Applied Mathematics and Computation 185, 1050–1062 (2007)

    Article  MATH  Google Scholar 

  10. Karaboga, D., Akay, B.: A Comparative Study of Artificial Bee Colony Algorithm. Applied Mathematics and Computation 214, 108–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shi, Y.H., Eberhart, R.: A Modified Particle Swarm Optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, pp. 69–73. IEEE Press, Anchorage (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Yao, F., Tan, L., Niu, B., Xu, J. (2012). A Novel DE-ABC-Based Hybrid Algorithm for Global Optimization. In: Huang, DS., Gan, Y., Premaratne, P., Han, K. (eds) Bio-Inspired Computing and Applications. ICIC 2011. Lecture Notes in Computer Science(), vol 6840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24553-4_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24553-4_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24552-7

  • Online ISBN: 978-3-642-24553-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics