Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Markovian Rake Transform for Digital Image Tampering Detection

  • Conference paper
Transactions on Data Hiding and Multimedia Security VI

Part of the book series: Lecture Notes in Computer Science ((TDHMS,volume 6730))

Abstract

An effective framework for passive-blind color image tampering detection is presented in this paper. The proposed image statistical features are generated by applying Markovian rake transform to image luminance component. Markovian rake transform is the application of Markov process to difference arrays which are derived from the quantized block discrete cosine transform 2-D arrays with multiple block sizes. The efficacy of thus generated features has been confirmed over a recently established large-scale image dataset designed for tampering detection, with which some relevant issues have been addressed and corresponding adjustment measures have been taken. The initial tests by using thus generated classifiers on some real-life forged images available in the Internet show signs of promise of the proposed features as well as the challenge encountered by the research community of image tampering detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, Z., Qiu, G., Sun, Q., Lin, X., Ni, Z., Shi, Y.Q.: A Unified Authentication Framework for JPEG2000. In: IEEE International Conference on Multimedia and Expo., vol. 2, pp. 915–918. IEEE Press, New York (2004)

    Google Scholar 

  2. Ng, T.T., Chang, S.F., Lin, C.Y., Sun, Q.: Passive-blind Image Forensics. In: Zeng, W., Yu, H., Lin, C.Y. (eds.) Multimedia Security Technologies for Digital Rights, ch.15, pp. 383–412. Academic Press, Missouri (2006)

    Chapter  Google Scholar 

  3. Ng, T.T., Chang, S.F., Sun, Q.: Blind Detection of Photomontage Using Higher Order Statistics. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp. 688–691. IEEE Press, New York (2004)

    Google Scholar 

  4. Johnson, M.K., Farid, H.: Exposing Digital Forgeries by Detecting Inconsistencies in Lighting. In: 7th Workshop on Multimedia and Security, pp. 1–10. ACM, New York (2005)

    Google Scholar 

  5. Johnson, M.K., Farid, H.: Exposing Digital Forgeries in Complex Lighting Environments. IEEE Transaction on Information Forensics and Security 2(3), 450–461 (2007)

    Article  Google Scholar 

  6. Hsu, Y.F., Chang, S.F.: Detecting Image Splicing Using Geometry Invariants and Camera Characteristics Consistency. In: IEEE International Conference on Multimedia and Expo., pp. 549–552. IEEE Press, New York (2006)

    Google Scholar 

  7. Fu, D., Shi, Y.Q., Su, W.: Detection of Image Splicing Based on Hilbert-Huang Transform and Moments of Characteristic Functions with Wavelet Decomposition. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 177–187. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Chen, W., Shi, Y.Q., Su, W.: Image Splicing Detection Using 2-D Phase Congruency and Statistical Moments of Characteristic Function. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6505, art. no. 65050R. SPIE, Washington (2007)

    Google Scholar 

  9. Shi, Y.Q., Chen, C., Chen, W.: A Natural Image Model Approach to Splicing Detection. In: 9th Workshop on Multimedia and Security, pp. 51–62. ACM, New York (2007)

    Google Scholar 

  10. Sutthiwan, P., Shi, Y.Q., Dong, J., Tan, T., Ng, T.T.: New Developments in Color Image Tampering Detection. In: IEEE International Symposium on Circuits and Systems, pp. 3064–3067. IEEE Press, New York (2010)

    Google Scholar 

  11. Dong, J., Wang, W., Tan, T., Shi, Y.Q.: Run-length and Edge Statistics Based Approach for Image Splicing Detection. In: Kim, H.J., Katzenbeisser, S., Ho, A.T.S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 76–87. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Farid, H.: Exposing Digital Forgeries from JPEG Ghost. IEEE Transactions on Information Forensics and Security 4(1), 154–160 (2009)

    Article  MathSciNet  Google Scholar 

  13. Qu, Z., Qiu, G., Huang, J.: Detect Digital Image Splicing with Visual Cues. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 247–261. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Dirik, A., Memon, N.: Image Tamper Detection Based on Demosaicing Artifacts. In: 16th IEEE International Conference on Image Processing, pp. 1497–1500. IEEE Press, New York (2009)

    Google Scholar 

  15. Wang, W., Dong, J., Tan, T.: Effective Image Splicing Detection Based on Image Chroma. In: 16th IEEE International Conference on Image Processing, pp. 1257–1260. IEEE Press, New York (2009)

    Google Scholar 

  16. Wang, W., Dong, J., Tan, T.: Image Tampering Detection Based on Stationary Distribution of Markov Chain. In: 17th IEEE International Conference on Image Processing, pp. 2101–2104. IEEE Press, New York (2010)

    Google Scholar 

  17. Sutthiwan, P., Shi, Y.Q., Su, W., Ng, T.T.: Rake Transform and Edge Statistics for Image Forgery Detection. In: Workshop on Content Protection and Forensics, IEEE International Conference on Multimedia and Expo., pp. 1463–1468. IEEE Press, New York (2010)

    Google Scholar 

  18. Columbia DVMM Research Lab: Columbia Image Splicing Detection Evaluation Dataset (2004), http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSpliced-dataSet/AuthSplicedDataSet.htm

  19. CASIA Tampered Image Detection Evaluation Database (2010), http://forensics.idealtest.org

  20. Shi, Y.Q., Chen, C., Chen, W.: A Markov Process Based Approach to Effective Attacking JPEG Steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 249–264. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Leon-Garcia, A.: Probability and Random Processes for Electrical Engineering, 2nd edn. Addison-Wesley Publishing Company, Reading (1993)

    MATH  Google Scholar 

  22. Impulse Adventure, http://www.impulseadventure.com/photo/jpeg-quality.html

  23. Schaefer, G., Stich, M.: UCID - An Uncompressed Colour Image Database. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5307, pp. 472–480. SPIE, Washington (2004)

    Google Scholar 

  24. LIBSVM: A library for support vector machines, http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sutthiwan, P., Shi, Y.Q., Zhao, H., Ng, TT., Su, W. (2011). Markovian Rake Transform for Digital Image Tampering Detection. In: Shi, Y.Q., et al. Transactions on Data Hiding and Multimedia Security VI. Lecture Notes in Computer Science, vol 6730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24556-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24556-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24555-8

  • Online ISBN: 978-3-642-24556-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics