Summary
The ability to automatically morph an existing mesh to conform to geometry modifications is a necessary capability to enable rapid prototyping of design variations. This paper compares six methods for morphing hexahedral and tetrahedral meshes, including the previously published FEMWARP and LBWARP methods as well as four new methods. Element quality and performance results show that different methods are superior on different models. We recommend that designers of applications that use mesh morphing consider both the FEMWARP and a linear simplex based method.
The work of the third author is supported in part by NSF grant CNS-0720749 and NSF CAREER Award OCI-1054459.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baker, T.J.: Mesh movement and metamorphosis. In: Proc. 10th Int. Meshing Roundtable, pp. 387–396 (2001)
Branets, L., Carey, G.F.: A local cell quality metric and variational grid smoothing algorithm. Eng. Comput. 21, 19–28 (2005)
Brewer, M., Diachin, L., Knupp, P., Leurent, T., Melander, D.: The Mesquite mesh quality improvement toolkit. In: Proc. 12th Int. Meshing Roundtable, pp. 239–250 (2003)
Cardoze, D., Miller, G., Olah, M., Phillips, T.: A Bézier-based moving mesh framework for simulation with elastic membranes. In: Proc. 13th Int. Meshing Roundtable, 71-80 (2004)
Dai, M., Schmidt, D.P.: Adaptive tetrahedral meshing in free-surface flow. J. Comp. Phys. 208, 228–252 (2005)
Davis, T.A., Natarajan, E.P.: Algorithm 8xx:KLU, a direct sparse solver for circuit simulation problems. ACM Transactions on Mathematical Software, 1-17 (2011)
Floater, M.S.: One-to-one piecewise linear mappings over triangulations. Math. Comp. 72, 685–696 (2003)
GSH3D, INRIA, http://www-roc.inria.fr/gamma/gamma/ghs3d/ghs.php
Helenbrook, B.T.: Mesh deformation using the biharmonic operator. Int. J. Num. Meth. Engr. 56, 1007–1021 (2003)
Jacobson, A., Baran, I., Popović, J., Sorkine, O.: Bounded Biharmonic Weights for Real-Time Deformation. To Appear In ACM Transactions On Graphics (Proc. Of ACM SIGGRAPH) 30(4) (2011), http://igl.ethz.ch/projects/bbw/
Knupp, P.: Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated quantities, part I. Int. J. Num. Meth. Engr. 48, 401–420 (2000)
Knupp, P.: Next-generation sweep tool: a method for generating all-hex meshes on two-and-one-half dimensional geomtries. In: Proc. 7th Int. Meshing Roundtable, pp. 505–513 (1998)
Knupp, P.: Updating meshes on deforming domains: An application of the target-matrix paradigm. Commun. Num. Meth. Engr. 24(6), 467–476 (2007)
Li, R., Tang, T., Zhang, P.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170, 562–588 (2001)
Michler, A.K.: Aircraft control surface deflection using RBF-based mesh deformation. Int. J. Num. Meth. Engr. (2011), doi: 10.1002/nme.3208
Nocedal, J., Wright, S.J.: Numerical optimization, 2nd edn. Springer, Heidelberg (2006)
Shontz, S.M., Vavasis, S.A.: Analysis of and workarounds for element reversal for a finite element-based algorithm for warping triangular and tetrahedral meshes. BIT, Numerical Mathematics 50, 863–884 (2010)
Shontz, S.M., Vavasis, S.A.: A mesh warping algorithm based on weighted Laplacian smoothing. In: Proc. 12th Int. Meshing Roundtable, pp. 147–158 (2003)
Shontz, S.M., Vavasis, S.A.: A robust solution procedure for hyperelastic solids with large boundary deformation. Eng. Comput. (2011), doi: 10.1007/s00366-011-0225-y
Sibson, R.: A brief description of natural neighbor interpolation. In: Interpretting Multivariate Data, pp. 21–36. John Wiley and Sons, New York (1981)
Sigal, I.A., Hardisty, M.R., Whyne, C.M.: Mesh-morphing algorithms for specimen-specific finite element modeling. J. Biomech. 41(7), 1381–1389 (2008)
Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure interactions with large displacements. Trans. ASME 2003 70, 58–63 (2003)
Stein, K., Tezduyar, T., Benney, R.: Automatic mesh update with the solid-extension mesh moving technique. Comput. Meth. Appl. M. 193, 2019–2032 (2004)
Staten, M.L., Canann, S.A., Owen, S.J.: BMSWEEP: locating interior nodes during sweeping. Eng. Comput. 15(3), 212–218 (1999)
Tezduyar, T., Behr, M., Mittal, S., Johnson, A.A.: Computation of unsteady incompressible flows with the finite element methods – Space-time formulations, iterative strategies and massively parallel implementations. New Methods in Transient Analysis, PVP-vol. 246/AMD-vol. 143, ASME, New York, 7-24 (1992)
The Trilinos Project, Sandia Nat. Lab., http://trilinos.sandia.gov/
Vavasis, S.: QMG: mesh generation and related software (2010), http://www.cs.cornell.edu/home/vavasis/qmg-home.html
Vurputoor, R., Mukherjee, N., Cabello, J., Hancock, M.: A mesh morphing technique for geometrically dissimilar tesselated surfaces. In: Proc. 16th Int. Meshing Roundtable, pp. 315–334 (2007)
Watson, D.F.: nngridr: an implementation of natural neighbor interpolation. University of Western Australia (1994)
Wright, S.J.: Primal-dual interior-point methods. SIAM (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S. (2011). A Comparison of Mesh Morphing Methods for 3D Shape Optimization. In: Quadros, W.R. (eds) Proceedings of the 20th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24734-7_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-24734-7_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24733-0
Online ISBN: 978-3-642-24734-7
eBook Packages: EngineeringEngineering (R0)