Abstract
A new approximation of the Mumford-Shah model is proposed for edge detection, which could handle open-ended curves and closed curves as well. The essential idea is to treat the curves by narrow regions, and use a sharp interface technique to solve the approximate Mumford-Shah model. A fast algorithm based on the augmented Lagrangian method is developed. Numerical results show that the proposed model and method are very efficient and have the potential to be used for edge detections for real complicated images.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alvarez, L., Lions, P., Morel, J.: Image selective smoothing and edge detection by nonlinear diffusion ii. SIAM J. Numer. Anal. 29(3), 845–866 (1992)
Ambrosio, L., Tortorelli, V.: Approximation of functions depending on jumps by elliptic functions via gamma-convergence. Comm. Pure Appl. Math. 13, 999–1036 (1990)
Ambrosio, L., Tortorelli, V.: On the approximation of functionals depending on jumps by quadratic, elliptic functions. Boll. Un. Mat. Ital. 6-B, 105–123 (1992)
Aubert, G., Kornprobst, P.: Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer-Verlag, New York Inc., Secaucus (2006)
Badshah, N., Chen, K.: Image selective segmentation under geometrical constraints using an active contour approach. Commun. Compu. Phys. 7(4), 759–778 (2010)
Bae, E., Tai, X.: Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 1–13. Springer, Heidelberg (2009)
Basu, S., Mukherjee, D., Acton, S.: Implicit evolution of open ended curves. In: IEEE International Conference on Image Processing, vol. 1, pp. 261–264 (2007)
Berkels, B., Rätz, A., Rumpf, M., Voigt, A.: Extracting grain boundaries and macroscopic deformations from images on atomic scale. J. Sci. Comput. 35(1), 1–23 (2008)
Braides, A.: Approximation of free-discontinuity problems. Springer, Heidelberg (1998)
Brook, A., Kimmel, R., Sochen, N.: Variational restoration and edge detection for color images. J. Math. Imaging Vis. 18(3), 247–268 (2003)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern. Anal. PAMI-8(6), 679–698 (1986)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Catté, F., Lions, P., Morel, J., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1-2), 89–97 (2004)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Dal Maso, G.: Introduction to Γ-convergence. Birkhauser, Basel (1993)
Dal Maso, G., Morel, J., Solimini, S.: A variation method in image segmentation-existence and approximation results. Acta Mathematica 168(1-2), 89–151 (1992)
Deriche, R.: Using canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. Comput. Vis. 1(2), 167–187 (1987)
Farouki, R., Neff, C.: Analytic properties of plane offset curves. Computer Aided Geometric Design 7(1-4), 83–99 (1990)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)
Leung, S., Zhao, H.: A grid based particle method for evolution of open curves and surfaces. J. Comput. Phys. 228(20), 7706–7728 (2009)
Lie, J., Lysaker, M., Tai, X.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)
Llanas, B., Lantaró, S.: Edge detection by adaptive splitting. J. Sci. Comput. 46(3), 486–518 (2011)
Ma, W., Manjunath, B.: Edgeflow: a technique for boundary detection and image segmentation. IEEE Trans. Image Process. 9(8), 1375–1388 (2000)
Meinhardt, E., Zacur, E., Frangi, A., Caselles, V.: 3D edge detection by selection of level surface patches. J. Math. Imaging Vis. 34(1), 1–16 (2009)
Merriman, B., Bence, J., Osher, S.: Motion of multiple functions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math 42(5), 577–685 (1989)
Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Paragios, N., Chen, Y., Faugeras, O.: Handbook of mathematical models in computer vision. Springer-Verlag New York Inc., Secaucus (2006)
Perona, P., Malik, J.: Scale-space and edge-detection using anisotropic diffusion. IEEE Trans. Pattern. Anal. 12(7), 629–639 (1990)
Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the Mumford-Shah functional. In: 12th International Conference on Computer Vision, pp. 1133–1140. IEEE, Los Alamitos (2009)
Smereka, P.: Spiral crystal growth. Physica D: Nonlinear Phenomena 138(3-4), 282–301 (2000)
Smith, S.: Edge thinning used in the susan edge detector. Technical Report, TR95SMS5 (1995)
Sun, Y., Wu, P., Wei, G., Wang, G.: Evolution-operator-based single-step method for image processing. Int. J. Biomed. Imaging, 1–28 (2006)
Suzuki, Y., Takayama, T., Motoike, I., Asai, T.: A reaction-diffusion model performing stripe-and spot-image restoration and its lsi implementation. Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 90(1), 20–29 (2007)
Tai, X., Christiansen, O., Lin, P., Skjælaaen, I.: Image segmentation using some piecewise constant level set methods with MBO type of projection. International Journal of Computer Vision 73(1), 61–76 (2007)
Tai, X.C., Wu, C.: Augmented lagrangian method, dual methods and split bregman iteration for ROF model. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 502–513. Springer, Heidelberg (2009)
Toponogov, V.: Differential geometry of curves and surfaces: a concise guide. Birkhauser, Basel (2006)
Upmanyu, M., Smith, R., Srolovitz, D.: Atomistic simulation of curvature driven grain boundary migration. Interface Sci. 6, 41–58 (1998)
Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)
Wei, G., Jia, Y.: Synchronization-based image edge detection. EPL (Europhysics Letters) 59(6), 814–819 (2002)
Witkin, A.P.: Scale-space filtering. In: Proc. 8th Int. Joint Conf. Art. Intell., Karlsruhe, Germany, pp. 1019–1022 (1983)
Wu, C., Zhang, J., Tai, X.: Augmented lagrangian method for total variation restoration with non-quadratic fidelity. In: UCLA, CAM09-82, pp. 1–26 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, LL., Shi, Y., Tai, XC. (2012). Robust Edge Detection Using Mumford-Shah Model and Binary Level Set Method. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-24785-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24784-2
Online ISBN: 978-3-642-24785-9
eBook Packages: Computer ScienceComputer Science (R0)