Abstract
The objective of semantic segmentation in microscopic images is to extract the cellular, nuclear or tissue components. This problem is challenging due to the large variations of features of these components (size, shape, orientation or texture). In this paper we present an automatic technique to robustly delimit the epithelial area (crypts) in microscopic images taken from colon tissues sections marked with cytokeratin-8. The epithelial area is highlighted using the anisotropic diffusion pyramid and segmented using MSER+. The crypts separation and lumen detection is performed by imposing topological constraints about the epithelial layer distribution within the tissue and the round-like shape of the crypt. The evaluation of the proposed method is made by comparing the results with ground-truth segmentations.
Chapter PDF
Similar content being viewed by others
Keywords
References
Wu, H.S., Xu, R., Harpaz, N., Burstein, D., Gil, J.: Segmentation of intestinal gland images with iterative region growing. Journal of Microscopy 220(3), 190–204 (2005)
Farjam, R., Soltanian-Zadeh, H., Jafari-Khouzani, K., Zoroofi, R.A.: An image analysis approach for automatic malignancy determination of prostate pathological images. Clinical Cytometry 72B(4), 227–240 (2007)
Gunduz-Demir, C., Kandemir, M., Tosun, A.B., Sokmensuer, C.: Automatic segmentation of colon glands using object-graphs. Medical Image Analysis 14(1), 1–12 (2010)
Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Gland segmentation and computerized Gleason grading of prostate histology by integrating low-, high-level and domain specific information. In: 2nd MICCAI Workshop on Microscopic Image Analysis with Application in Biology, Piscataway, NJ, USA (2007)
Chen, C.H., Lee, G.G.: Image Segmentation Using Multiresolution Wavelet Analysis and Expectation-Maximization (EM) Algorithm for Digital Mammography. International Journal of Imaging Systems and Technology 8(5), 491–504 (1997)
Roshni, V.S., Raju, G.: Image Segmentation using Multiresolution Texture Gradient and Watershed Algorithm. International Journal of Computer Applications 22(5), 21–28 (2011)
Tolba, M.F., Mostafa, M.G., Gharib, T.F., Salem, M.A.: MR-Brain Image Segmentation Using Gaussian Multiresolution Analysis and the EM Algorithm. In: Proc. ICEIS (2), pp. 165–170 (2003)
Kimmel, R., Zhang, C., Bronstein, A., Bronstein, M.: Are MSER features really interesting?. IEEE Trans. PAMI (2010) (in press)
Donoser, M., Bischof, H.: 3D Segmentation by Maximally Stable Volumes (MSVs). In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 63–66 (2006)
Humphries, A., Wright, N.A.: Colonic Crypt Organization and Tumorigenesis: Human Colonic Crypts. Nature Reviews Cancer 8(6), 415–424 (2008)
Moll, R., Divo, M., Langbein, L.: The human keratins: biology and pathology. Histochemistry and Cell Biology 129(6), 705–733 (2008)
de Kruijf, E.M., van Nes, J.G.H., van de Velde, C.J.H., Putter, H., Smit Vincent, T.H.B.M., Liefers Gerrit, J., Kuppen, P.J.K., Tollenaar, R.A.E.M., Mesker, W.E.: Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Research and Treatment 125(3), 687–696 (2011)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Addison-Wesley, Reading (1992)
Otsu, N.: A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1), 62–66 (1979)
Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution Image Segmentations in Graph Pyramids. Applied Graph Theory in Computer Vision and Pattern Recognition 52, 3–41 (2007)
Smochina, C., Manta, V., Kropatsch, W.G.: Semantic Segmentation of Microscopic Images using a Morphological Hierarchy. In: Real, P., Diaz-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 102–109. Springer, Heidelberg (2011)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Scharr, H., Weickert, J.: An anisotropic diffusion algorithm with optimized rotation invariance. In: German Association for Pattern Recognition, Kiel, Germany, pp. 460–467 (September 2000)
Acton, S.T., Bovik, A.C., Crawford, M.M.: Anisotropic diffusion pyramids for image segmentation. In: Proceedings of 1st IEEE International Conference on Image Processing (ICIP 1994), vol. 3, pp. 478–482 (1994)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. BMVC, pp. 384–393 (2002)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. International Journal of Computer Vision 65, 43–72 (2005)
Chalana, V., Kim, Y.: A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans. Med. Imag. 16(5), 642–652 (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Smochina, C., Rogojanu, R., Manta, V., Kropatsch, W. (2011). Epithelial Area Detection in Cytokeratin Microscopic Images Using MSER Segmentation in an Anisotropic Pyramid. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds) Pattern Recognition in Bioinformatics. PRIB 2011. Lecture Notes in Computer Science(), vol 7036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24855-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-24855-9_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24854-2
Online ISBN: 978-3-642-24855-9
eBook Packages: Computer ScienceComputer Science (R0)