Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

How Much Is Enough? Choosing ε for Differential Privacy

  • Conference paper
Information Security (ISC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7001))

Included in the following conference series:

Abstract

Differential privacy is a recent notion, and while it is nice conceptually it has been difficult to apply in practice. The parameters of differential privacy have an intuitive theoretical interpretation, but the implications and impacts on the risk of disclosure in practice have not yet been studied, and choosing appropriate values for them is non-trivial. Although the privacy parameter ε in differential privacy is used to quantify the privacy risk posed by releasing statistics computed on sensitive data, ε is not an absolute measure of privacy but rather a relative measure. In effect, even for the same value of ε, the privacy guarantees enforced by differential privacy are different based on the domain of attribute in question and the query supported. We consider the probability of identifying any particular individual as being in the database, and demonstrate the challenge of setting the proper value of ε given the goal of protecting individuals in the database with some fixed probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., Talwar, K.: Privacy, accuracy, and consistency too: a holistic solution to contingency table release. In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 273–282. ACM, New York (2007)

    Chapter  Google Scholar 

  2. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 128–138. ACM, New York (2005)

    Chapter  Google Scholar 

  3. Blum, A., Ligett, K., Roth, A.: A learning theory approach to non-interactive database privacy. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 609–618. ACM, New York (2008)

    Google Scholar 

  4. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistik Tidskrift 15(429-444), 2–1 (1977)

    Google Scholar 

  5. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 202–210. ACM, New York (2003)

    Chapter  Google Scholar 

  6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Kasiviswanathan, S., Smith, A.: A note on differential privacy: Defining resistance to arbitrary side information. Arxiv preprint arXiv:0803.3946 (2008)

    Google Scholar 

  12. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-preserving data analysis. In: Proceedings of the 35th SIGMOD International Conference on Management of Data, pp. 19–30. ACM, New York (2009)

    Chapter  Google Scholar 

  13. Nergiz, M.E., Clifton, C.: δ-presence without complete world knowledge. IEEE Transactions on Knowledge and Data Engineering 22(6), 868–883 (2010), http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.125

    Article  Google Scholar 

  14. Nergiz, M., Atzori, M., Clifton, C.: Hiding the presence of individuals from shared databases. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, Beijing, China, June 11-14, pp. 665–676 (2007), http://doi.acm.org/10.1145/1247480.1247554

  15. Nissim, K., Raskhodnikova, S., Smith, A.: Smooth sensitivity and sampling in private data analysis. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 75–84. ACM, New York (2007)

    Google Scholar 

  16. Roy, I., Setty, S., Kilzer, A., Shmatikov, V., Witchel, E.: Airavat: Security and privacy for MapReduce. In: Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, p. 20. USENIX Association (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lee, J., Clifton, C. (2011). How Much Is Enough? Choosing ε for Differential Privacy. In: Lai, X., Zhou, J., Li, H. (eds) Information Security. ISC 2011. Lecture Notes in Computer Science, vol 7001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24861-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24861-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24860-3

  • Online ISBN: 978-3-642-24861-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics