Abstract
This paper is devoted to a knapsack problem with a cardinality constraint when dropping the assumption of additive representability [10]. More precisely, we assume that we only have a classification of the items into ordered classes. We aim at generating the set of preferred subsets of items, according to a pairwise dominance relation between subsets that naturally extends the ordering relation over classes [4,16]. We first show that the problem reduces to a multiobjective knapsack problem with cardinality constraint. We then propose two polynomial algorithms to solve it, one based on a multiobjective dynamic programming scheme and the other on a multiobjective branch and bound procedure. We conclude by providing numerical tests to compare both approaches.
This research has been supported by the project ANR-09-BLAN-0361 GUaranteed Efficiency for PAReto optimal solutions Determination (GUEPARD).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barberà , S., Bossert, W., Pattanaik, P.K.: Ranking sets of objects. In: Barberà , S., Hammond, P.J., Seidl, C. (eds.) Handbook of Utility Theory, vol. 2, Kluwer Academic Publishers, Dordrecht (2004)
Bartee, E.M.: Problem solving with ordinal measurement. Management Science 17(10), 622–633 (1971)
Bossert, W., Pattanaik, P.K., Xu, Y.: Ranking opportunity sets: An axiomatic approach. Journal of Economic Theory 63(2), 326–345 (1994)
Bossong, U., Schweigert, D.: Minimal paths on ordered graphs. Technical Report 24, Report in Wirtschaftsmathematik, Universität Kaiserslautern (1996)
Bouveret, S., Endriss, U., Lang, J.: Fair division under ordinal preferences: Computing envy-free allocations of indivisible goods. In: European Conference on Artificial Intelligence (ECAI 2010), pp. 387–392. IOS Press, Amsterdam (2010)
Brams, S., Edelman, P., Fishburn, P.: Fair division of indivisible items. Theory and Decision 5(2), 147–180 (2004)
Brams, S., King, D.: Efficient fair division – help the worst off or avoid envy? Rationality and Society 17(4), 387–421 (2005)
Della Croce, F., Paschos, V.T., Tsoukias, A.: An improved general procedure for lexicographic bottleneck problems. Op. Res. Letters 24, 187–194 (1999)
Erlebach, T., Kellerer, H., Pferschy, U.: Approximating multi-objective knapsack problems. In: Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 210–221. Springer, Heidelberg (2001)
Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)
Fishburn, P.C.: Signed orders and power set extensions. Journal of Economic Theory 56, 1–19 (1992)
Halpern, J.Y.: Defining relative likelihood in partially-ordered preferential structures. Journal of Artificial Intelligence Research 7, 1–24 (1997)
Hansen, P.: Bicriterion path problems. In: Fandel, G., Gal, T. (eds.) Multicriteria Decision Making (1980)
Klamler, C., Pferschy, U., Ruzika, S.: Committee selection with a weight constraint based on lexicographic rankings of individuals. In: Rossi, F., Tsoukias, A. (eds.) ADT 2009. LNCS, vol. 5783, pp. 50–61. Springer, Heidelberg (2009)
Klamroth, K., Wiecek, M.M.: Dynamic programming approaches to the multiple criteria knapsack problem. Naval Research Logistics 47, 57–76 (2000)
Schweigert, D.: Ordered graphs and minimal spanning trees. Foundations of Computing and Decision Sciences 24(4), 219–229 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Delort, C., Spanjaard, O., Weng, P. (2011). Committee Selection with a Weight Constraint Based on a Pairwise Dominance Relation. In: Brafman, R.I., Roberts, F.S., Tsoukià s, A. (eds) Algorithmic Decision Theory. ADT 2011. Lecture Notes in Computer Science(), vol 6992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24873-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-24873-3_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24872-6
Online ISBN: 978-3-642-24873-3
eBook Packages: Computer ScienceComputer Science (R0)