Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Edge Clique Partition of K 4-Free and Planar Graphs

  • Conference paper
Computational Geometry, Graphs and Applications (CGGA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7033))

Abstract

Edge k -Clique Partition k -ECP is the problem of dividing the edge set of an undirected graph into a set of at most k edge-disjoint cliques, where k ≥ 1 is an input parameter. The problem is NP-hard but in FPT. We propose several improved FPT algorithms for k -ECP on K 4-free graphs, planar graphs, and cubic graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameter view. Journal of Computer and System Sciences 67, 808–832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodlaender, H.L., Fellows, M.R., Heggernes, P., Mancini, F., Papadopoulos, C., Rosamond, F.: Clustering with partial information. Theoretical Computer Science 411(7-9), 1202–1211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cerioli, M.R., Faria, L., Ferreira, T.O., Martinhon, C.A.J., Protti, F., Reed, B.: Partition into cliques for cubic graphs: planar case, complexity and approximation. Discrete Applied Mathematics 156, 2270–2278 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parametrized algorithms on bounded-genus graphs and h-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Djidjev, H.N., Venkatesan, S.M.: Reduced constants for simple cycle graph separation. Acta Informatica 34, 231–243 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  8. Fellows, M.R., Knauer, C., Nishimura, N., Ragde, P., Rosamond, F., Stege, U., Thilikos, D.M., Whitesides, S.: Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 311–322. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Figueroa, A., Bornemann, J., Jiang, T.: Clustering binary fingerprint vectors with missing values for DNA array data analysis. Journal of Computational Biology 11, 887–901 (2004)

    Article  Google Scholar 

  10. Fisher, D.: The number of triangles in a K 4-free graph. Discrete Mathematics 69, 203–205 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fomin, F.V., Golovach, P., Thilikos, D.M.: Contraction Bidimensionality: The Accurate Picture. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 706–717. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Holyer, I.: The NP-completeness of some edge-partition problems. SIAM Journal on Computing 10(4), 713–717 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: A parameterized view. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 127–137. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Mujuni, E., Rosamond, F.: Parameterized complexity of the clique partition problem. In: Proceedings of the 14th Computing: Australian Theory Symposium (CATS 2008), Conferences in Research and Practice in Information Technology, vol. 77, pp. 75–78 (2008)

    Google Scholar 

  15. Niedermeier, R.: Invitation to fixed parameter algorithms. Oxford University Press, U.K (2006)

    Book  MATH  Google Scholar 

  16. Niedermeier, R., Rossmanith, P.: Upper Bounds for Vertex Cover Further Improved. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 561–570. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Orlin, J.: Contentment in graph theory: covering graphs with cliques. Indagationed Mathematicae 39, 406–424 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schmidt, J.P., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM Journal on Computing 19(5), 775–786 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shaohan, M., Wallis, W.D., Lin, W.J.: The complexity of the clique partition number problem. Congressus Numerantium 67, 56–66 (1988); Proceedings of the 19th Southeastern Conference on Combinatorics, Graph Theory and Computing

    MathSciNet  MATH  Google Scholar 

  20. Wu, X., Lin, Y., Fleischer, R.: Research of fixed parameter algorithm for clique partition problem. Computer Engineering 37(11), 92–93 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fleischer, R., Wu, X. (2011). Edge Clique Partition of K 4-Free and Planar Graphs. In: Akiyama, J., Bo, J., Kano, M., Tan, X. (eds) Computational Geometry, Graphs and Applications. CGGA 2010. Lecture Notes in Computer Science, vol 7033. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24983-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24983-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24982-2

  • Online ISBN: 978-3-642-24983-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics