Abstract
Here we present a method for online signature verification treated as a two-class pattern recognition problem. The method is based on the acceleration signals obtained from signing sessions using a special pen device. We applied a DTW (dynamic time warping) metric to measure any dissimilarity between the acceleration signals and represented our results in terms of a distance metric.
Chapter PDF
Similar content being viewed by others
References
Lei, H., Govindaraju, V.: A comparative study on the consistency of features in on-line signature verification. Pattern Rec. Letters 26, 2483–2489 (2005)
Richiardi, J., Ketabdar, H., Drygajlo, A.: Local and global feature selection for on-line signature verification. In: Proc. IAPR 8th International Conference on Document Analysis and Recognition (ICDAR 2005), pp. 625–629 (2005)
Nanni, L., Maiorana, E., Lumini, A., Campisi, P.: Combining local, regional and global matchers for a template protected on-line signature verification system. Expert Syst. Appl. 37, 3676–3684 (2010)
Yeung, D.Y., Chang, H., Xiong, Y., George, S., Kashi, R., Matsumoto, T., Rigoll, G.: SVC2004: First International Signature Verification Competition. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 16–22. Springer, Heidelberg (2004)
Plamondon, R., Lorette, G.: Automatic signature verification and writer identification - the state of the art. Pattern Rec. 22(2), 107–131 (1989)
Leclerc, F., Plamondon, R.: Automatic Signature Verification. In: Progress in Automatic Signature Verification
Daramola, S., Ibiyemi, T.: An efficient on-line signature verification system. International Journal of Engineering and Technology 10(4) (2010)
Kholmatov, A., Yanikoglu, B.: Identity authentication using an improved online signature verification method. Pattern Rec. Letters 26, 2400–2408 (2005)
Fang, P., Wu, Z., Shen, F., Ge, Y., Fang, B.: Improved dtw algorithm for online signature verification based on writing forces. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3644, pp. 631–640. Springer, Heidelberg (2005)
Mailah, M., Lim, B.H.: Biometric signature verification using pen position, time, velocity and pressure parameters. Jurnal Teknologi A 48A, 35–54 (2008)
Baron, R., Plamondon, R.: Acceleration measurement with an instrumented pen for signature verification and handwriting analysis. IEEE Transactions on Instrumentation and Measurement 38, 1132–1138 (1989)
Lew, J.S.: Optimal accelerometer layouts for data recovery in signature verification. IBM J. Res. Dev. 24, 496–511 (1980)
Bashir, M., Kempf, J.: Reduced dynamic time warping for handwriting recognition based on multi-dimensional time series of a novel pen device. World Academy of Science, Engineering and Technology 45, 382–388 (2008)
Rohlik, O., Mautner, P., Matousek, V., Kempf, J.: A new approach to signature verification: digital data acquisition pen. Neural Network World 11(5), 493–501 (2001)
Mautner, P., Rohlik, O., Matousek, V., Kempf, J.: Signature verification using art-2 neural network. In: Proceedings of the 9th International Conference on Neural Information Processing, ICONIP 2002, vol. 2, pp. 636–639 (November 2002)
Ortega-Garcia, J., Fierrez-Aguilar, J., Simon, D., Gonzalez, J., Faundez-Zanuy, M., Espinosa, V., Satue, A., Hernaez, I., Igarza, J.J., Vivaracho, C., Escudero, D., Moro, Q.I.: MCYT baseline corpus: a bimodal biometric database. IEE Proceedings of Vision, Image and Signal Processing 150(6), 395–401 (2003)
Kopasz, K., Makra, P., Gingl, Z.: Edaq530: A transparent, open-end and open-source measurement solution in natural science education. Eur. J. Phys. 32, 491–504 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bunke, H., Csirik, J., Gingl, Z., Griechisch, E. (2011). Online Signature Verification Method Based on the Acceleration Signals of Handwriting Samples. In: San Martin, C., Kim, SW. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2011. Lecture Notes in Computer Science, vol 7042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25085-9_59
Download citation
DOI: https://doi.org/10.1007/978-3-642-25085-9_59
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25084-2
Online ISBN: 978-3-642-25085-9
eBook Packages: Computer ScienceComputer Science (R0)