Abstract
In general, large amount of segmented and labeled data is needed to estimate statistical language understanding systems. In recent years, different approaches have been proposed to reduce the segmentation and labeling effort by means of unsupervised o semi-supervised learning techniques. We propose an active learning approach to the estimation of statistical language understanding models that involves the transcription, labeling and segmentation of a small amount of data, along with the use of raw data. We use this approach to learn the understanding component of a Spoken Dialog System. Some experiments that show the appropriateness of our approach are also presented.
Chapter PDF
Similar content being viewed by others
References
De Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur, G.: Spoken language understanding: A survey. IEEE Signal Processing Magazine 25(3), 50–58 (2008)
Fraser, M., Gilbert, G.: Simulating speech systems. Computer Speech and Language 5, 81–99 (1991)
Gotab, P., Bechet, F., Damnati, G.: Active learning for rule-based and corpus-based spoken labguage understanding moldes. In: IEEE Workshop Automatic Speech Recognition and Understanding (ASRU 2009), pp. 444–449 (2009)
Gotab, P., Damnati, G., Becher, F., Delphin-Poulat, L.: Online slu model adaptation with a partial oracle. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 2862–2865 (2010)
He, Y., Young, S.: Spoken language understanding using the hidden vector state model. Speech Communication 48, 262–275 (2006)
Ortega, L., Galiano, I., Hurtado, L.F., Sanchis, E., Segarra, E.: A statistical segment-based approach for spoken language understanding. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 1836–1839 (2010)
Riccardi, G., Hakkani-Tur, D.: Active learning: theory and applications to automatic speech recognition. IEEE Transactions on Speech and Audio Processing 13(4), 504–511 (2005)
Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting Semantic Information Through Automatic Learning Techniques. International Journal of Pattern Recognition and Artificial Intelligence 16(3), 301–307 (2002)
Tur, G., Hakkani-Tr, D., Schapire, R.E.: Combining active and semi-supervised learning for spoken language understanding. Speech Communication 45, 171–186 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
García, F., Hurtado, LF., Sanchis, E., Segarra, E. (2011). An Active Learning Approach for Statistical Spoken Language Understanding. In: San Martin, C., Kim, SW. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2011. Lecture Notes in Computer Science, vol 7042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25085-9_67
Download citation
DOI: https://doi.org/10.1007/978-3-642-25085-9_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25084-2
Online ISBN: 978-3-642-25085-9
eBook Packages: Computer ScienceComputer Science (R0)