Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Breaking the Deadlock: Simultaneously Discovering Attribute Matching and Cluster Matching with Multi-Objective Simulated Annealing

  • Conference paper
On the Move to Meaningful Internet Systems: OTM 2011 (OTM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7045))

Abstract

In this paper, we present a data mining approach to challenges in the matching and integration of heterogeneous datasets. In particular, we propose solutions to two problems that arise in combining information from different results of scientific research. The first problem, attribute matching, involves discovery of correspondences among distinct numeric-typed summary features (“attributes”) that are used to characterize datasets that have been collected and analyzed in different research labs. The second problem, cluster matching, involves discovery of matchings between patterns across datasets. We treat both of these problems together as a multi-objective optimization problem. A multi-objective simulated annealing algorithm is described to find the optimal solution. The utility of this approach is demonstrated in a series of experiments using synthetic and realistic datasets that are designed to simulate heterogeneous data from different sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bae, E., Bailey, J., Dong, G.: A Clustering Comparison Measure Using Density Profiles and Its Application to The Discovery tf Alternate Clusterings. Data Min. Knowl. Discov. 21, 427–471 (2010), http://dx.doi.org/10.1007/s10618-009-0164-z

    Article  MathSciNet  Google Scholar 

  2. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering Complex Semantic Matches between Database Schemas. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. ACM Press (2004)

    Google Scholar 

  3. Dien, J.: The ERP PCA Toolkit: An Open Source Program for Advanced Statistical Analysis of Event-Related Potential Data. Journal of Neuroscience Methods 187(1), 138–145 (2010), http://www.sciencedirect.com/science/article/B6T04-4Y0KWB2-4/2/3c0e7b36b475b8d0e9a72c7b868a7dcd

    Article  MathSciNet  Google Scholar 

  4. Doan, A., Domingos, P., Levy, A.Y.: Learning Source Description for Data Integration. In: WebDB (Informal Proceedings), pp. 81–86 (2000), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.9378

  5. Fred, A.L., Jain, A.K.: Robust Data Clustering. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p. 128 (2003)

    Google Scholar 

  6. Frishkoff, G.A., Frank, R.M., Rong, J., Dou, D., Dien, J., Halderman, L.K.: A Framework to Support Automated Classification and Labeling of Brain Electromagnetic Patterns. Computational Intelligence and Neuroscience (CIN), Special Issue, EEG/MEG Analysis and Signal Processing 7(3), 1–13 (2007)

    Google Scholar 

  7. Hamers, L., Hemeryck, Y., Herweyers, G., Janssen, M., Keters, H., Rousseau, R., Vanhoutte, A.: Similarity Measures In Scientometric Research: The Jaccard Index Versus Salton’s Cosine Formula. Inf. Process. Manage. 25, 315–318 (1989), http://portal.acm.org/citation.cfm?id=67223.67231

    Article  Google Scholar 

  8. Kuhn, H.W.: The Hungarian Method for The Assignment Problem. Naval Research Logistic Quarterly 2, 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  9. Larson, J.A., Navathe, S.B., Elmasri, R.: A Theory of Attributed Equivalence in Databases with Application to Schema Integration. IEEE Trans. Softw. Eng. 15, 449–463 (1989), http://portal.acm.org/citation.cfm?id=63379.63387

    Article  MATH  Google Scholar 

  10. Li, W.S., Clifton, C.: Semint: A Tool for Identifying Attribute Correspondences in Heterogeneous Databases Using Neural Networks (2000)

    Google Scholar 

  11. Liu, H., Frishkoff, G., Frank, R., Dou, D.: Ontology-Based Mining of Brainwaves: A Sequence Similarity Technique for Mapping Alternative Features in Event-Related Potentials (ERP) Data. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 43–54. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching. VLDB Journal 10 (2001)

    Google Scholar 

  13. Rand, W.M.: Objective Criteria for the Evaluation of Clustering Methods. Journal of the American Statistical Association 66(336), 846–850 (1971), http://dx.doi.org/10.2307/2284239

    Article  Google Scholar 

  14. Sheth, A.P., Larson, J.A., Cornelio, A., Navathe, S.B.: A Tool for Integrating Conceptual Schemas and User Views. In: Proceedings of the Fourth International Conference on Data Engineering, pp. 176–183. IEEE Computer Society, Washington, DC, USA (1988), http://portal.acm.org/citation.cfm?id=645473.653395

    Chapter  Google Scholar 

  15. Suman, B.: Simulated annealing based multiobjective algorithm and their application for system reliability. Engin. Optim., 391–416 (2003)

    Google Scholar 

  16. Suman, B., Kumar, P.: A survey of simulated annealing as a tool for single¡/b¿ and multiobjective optimization. Journal of the Operational Research Society 57, 1143–1160 (2006)

    Article  MATH  Google Scholar 

  17. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study, pp. 292–301. Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, H., Dou, D. (2011). Breaking the Deadlock: Simultaneously Discovering Attribute Matching and Cluster Matching with Multi-Objective Simulated Annealing. In: Meersman, R., et al. On the Move to Meaningful Internet Systems: OTM 2011. OTM 2011. Lecture Notes in Computer Science, vol 7045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25106-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25106-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25105-4

  • Online ISBN: 978-3-642-25106-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics