Abstract
In this paper, we firstly present an approach to derive a kind of special linear characteristics for byte-oriented SPN block ciphers. Then based on this approach, we study the security of the block cipher ARIA against linear cryptanalysis and propose an attack on 7-round ARIA with 128/192/256-bit key size, an attack on 9-round ARIA with 192/256-bit key size as well as an attack on 11-round ARIA with 256-bit key size. The designers of ARIA expect that there isn’t any effective attack on 8 or more rounds of ARIA with 128/192/256-bit key size by means of linear cryptanalysis. However, our work shows that such attacks do exist. Moreover, our cryptanalytic results are the best known cryptanalytic results of ARIA so far.
Chapter PDF
Similar content being viewed by others
References
Kwon, D., Kim, J., Park, S., Sung, S.H., et al.: New Block Cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)
National Security Research Institute, Korea. Specification of ARIA. Version 1.0 (2005)
Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)
Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)
Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. Journal of Cryptology 18(4), 291–311 (2005)
Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)
Wu, W., Zhang, W., Feng, D.: Impossible Differential Cryptanalysis of Reduced-Round ARIA and Camellia. Journal of Computer Science and Technology 22(3), 449–456 (2007)
Li, R., Sun, B., Zhang, P., Li, C.: New Impossible Differentials of ARIA. Cryptology ePrint Archive, Report 2008/227 (2008), http://eprint.iacr.org/
Du, C., Chen, J.: Impossible Differential Cryptanalysis of ARIA Reduced to 7 Rounds. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 20–30. Springer, Heidelberg (2010)
Li, P., Sun, B., Li, C.: Integral Cryptanalysis of ARIA. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 1–14. Springer, Heidelberg (2010)
Li, Y., Wu, W., Zhang, L.: Integral Attacks on Reduced-Round ARIA Block Cipher. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 19–29. Springer, Heidelberg (2010)
Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: New Boomerang Attacks on ARIA. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 163–175. Springer, Heidelberg (2010)
Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
Tang, X., Sun, B., Li, R., Li, C.: A Meet-in-the-middle Attack on ARIA. Cryptology ePrint Archive, Report 2010/168 (2010), http://eprint.iacr.org/
Demirci, H., Selçuk, A.A.: A Meet-in-the-Middle Attack on 8-Round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 116–126. Springer, Heidelberg (2008)
Selçuk, A.A.: On Probability of Success in Linear and Differential Cryptanalysis. Journal of Cryptology 21(1), 131–147 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, Z., Gu, D., Liu, Y., Li, J., Li, W. (2011). Linear Cryptanalysis of ARIA Block Cipher. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds) Information and Communications Security. ICICS 2011. Lecture Notes in Computer Science, vol 7043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25243-3_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-25243-3_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25242-6
Online ISBN: 978-3-642-25243-3
eBook Packages: Computer ScienceComputer Science (R0)