Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Statistical Decoding of Codes over \(\mathbb{F}_q\)

  • Conference paper
Post-Quantum Cryptography (PQCrypto 2011)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7071))

Included in the following conference series:

Abstract

In this paper we analyze statistical decoding over a finite field \(\mathbb{F}_q\). We generalize Overbeck’s binary statistical decoding algorithm to codes over \(\mathbb{F}_q\), and analyze the success probability of our algorithm. We provide experimental data for different field sizes. In addition to that, we describe two techniques how knowledge about structure of the code or of the solution can be used in order to speed up the decoding algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Augot, D., Finiasz, M., Sendrier, N.: A Family of Fast Syndrome Based Cryptographic Hash Functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 64–83. Springer, Heidelberg (2005); Cited on page 7

    Chapter  Google Scholar 

  2. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing Key Length of the McEliece Cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 77–97. Springer, Heidelberg (2009); Cited on page 6

    Chapter  Google Scholar 

  3. Bernstein, D.J., Lange, T., Peters, C.: Ball-collision decoding. Cryptology ePrint Archive, Report 2010/585 (2010), http://eprint.iacr.org/2010/585.pdf ; Cited on page 1

  4. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Faster 2-regular information-set decoding. Cryptology ePrint Archive, Report 2011/120 (2011), http://eprint.iacr.org/ ; Cited on page 7

  5. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: Improved code-based identification scheme. In: SAC 2010 (2010), http://arxiv.org/abs/1001.3017v1 ; Cited on page 6

  6. Cheung, K.-M.: The weight distribution and randomness of linear codes. TDA Progress Report 42–97, Communications Systems Research Section (1989); Cited on page 7

    Google Scholar 

  7. Al Jabri, A.: A Statistical Decoding Algorithm for General Linear Block Codes. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 1–8. Springer, Heidelberg (2001); Cited on page 1

    Chapter  Google Scholar 

  8. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes. North-Holland Mathematical Library, vol. 16 (1977); Cited on page 7

    Google Scholar 

  9. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DNS Progress Report, pp. 114–116 (1978); Cited on page 1

    Google Scholar 

  10. Minder, L., Sinclair, A.: The extended k-tree algorithm. In: SODA, pp. 586–595 (2009); Cited on page 1

    Google Scholar 

  11. Niebuhr, R., Cayrel, P.-L., Bulygin, S., Buchmann, J.: On lower bounds for Information Set Decoding over \(\mathbb{F}_{q}\). In: SCC 2010, RHUL, London, UK, pp. 143–158 (2010); Cited on page 1 and 9

    Google Scholar 

  12. Niebuhr, R., Cayrel, P.-L., Bulygin, S., Buchmann, J.: On lower bounds for Information Set Decoding over \(\mathbb{F}_{q}\). and on the effect of Partial Knowledge. Submitted to Math in CS, SCC 2010 (2011); Cited on page 9

    Google Scholar 

  13. Overbeck, R.: Statistical Decoding Revisited. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 283–294. Springer, Heidelberg (2006); Cited on page 1, 7 and 10

    Chapter  Google Scholar 

  14. Peters, C.: Information-set decoding for linear codes over \(\mathbb{F}_{q}\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010); Cited on page 9

    Chapter  Google Scholar 

  15. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions on Information Theory, 5–9 (1962); Cited on page 9

    Google Scholar 

  16. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, pp. 124–134. IEEE Press (1994); Cited on page 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niebuhr, R. (2011). Statistical Decoding of Codes over \(\mathbb{F}_q\) . In: Yang, BY. (eds) Post-Quantum Cryptography. PQCrypto 2011. Lecture Notes in Computer Science, vol 7071. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25405-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25405-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25404-8

  • Online ISBN: 978-3-642-25405-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics