Abstract
Computer vision based gender classification is an interesting and challenging research topic in visual surveillance and human-computer interaction systems. In this paper, based on the results of psychophysics and neurophysiology studies that both local and global information is crucial for the image perception, we present an effective global-local features fusion (GLFF) method for gender classification. First, the global features are extracted based on active appearance models (AAM) and the local features are extracted by LBP operator. Second, the global features and local features are fused by sequent selection for gender classification. Third, gender is predicted based on the selected features via support vector machines (SVM). The experimental results show that the proposed local-global information combination scheme could significantly improve the gender classification accuracy obtained by either local or global features, leading to promising performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Albert, A.M., Ricanek, K., Patterson, E.: A review of the literature on the aging adult skull and face: Implications for forensic science research and applications. Forensic Science International 172, 1–9 (2007)
Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned face. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)
Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Revisiting linear discriminant techniques in gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 858–864 (2011)
Baluja, S., Rowley, H.: Boosting sex identification performance. IJCV 71(1), 111–119 (2007)
Wild, H.A., Barrett, S.E., Spence, M.J., et al.: Recognition and sex categorization of adults’ and children’s face: examining performance in the absence of sexstereotyped cues. J. off Exp. Child Psychology 77, 269–291 (2000)
Brucelf, V., et al.: Sex discrimination: how do we tell the difference between male and female face? Perception 22, 131–152 (1993)
Otoole, A., et al.: Sex classification is better with three dimensional head structure than with image intensity information. Perception 26, 75–84 (1997)
Yang, M.H., Moghaddam, B.: Gender classification using support vector machines. In: ICIP, vol. 2, pp. 471–474 (2000)
Gutta, S., Wechsler, H.: Gender and ethnic classifications of human faces using hybrid classifiers. In: Proceedings 1999 International Joint Conference on Neural Networks, pp. 4084–4089 (1999)
Yang, Z., Li, M., Ai, H.: An experimental study on automatic face gender classification. In: ICPR, pp. 1099–1102 (2006)
Gao, W., Ai, H.: Face Gender Classification on Consumer Images in a Multiethnic Environment. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 169–178. Springer, Heidelberg (2009)
Guo, G.D., Dyer, C., Fu, Y., Huang, T.S.: Is gender recognition influenced by age? In: IEEE International Workshop on Human-Computer Interaction (HCI 2009), in conjunction with ICCV 2009 (2009)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)
Wang, Y., Ricanek, K., Chen, C., Chang, Y.: Gender classification from infants to seniors. In: Proceedings of the IEEE Conference on Biometrics, Theory, Application and Systems (2010)
Ricanek, K., Wang, Y., Chen, C., Simmons, S.J.: Generalized multi-ethnic face age-estimation. In: IEEE Conf. on Biometrics: Theory, Applications and Systems (2009)
Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: CVPRW (2010)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Lian, H.-C., Lu, B.-L.: Multi-View Gender Classification Using Local Binary Patterns and Support Vector Machines. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 202–209. Springer, Heidelberg (2006)
Fang, Y., Wang, Z.: Improving lbp features for gender classification. In: ICWAPR (2008)
Jabid, T., Kabir, M.H., Chae, O.: Gender classification using local directional descriptor. In: ICPR (2010)
Mahalingam, G., Kambhamettu, C.: Can discriminative cues aid face recognition across age? In: FG (2011)
Sun, Z., Wang, Y., Tan, T., Cui, J.: Cascading statistical and structural classifiers for iris recognition. In: ICPR (2004)
Su, Y., Shan, S., Chen, X., Gao, W.: Hierarchical ensemble of global and local classifiers for face recognition. IEEE Transactions Image Processing 18(8), 1885–1896 (2009)
Zhang, L., Zhang, L., Zhang, D., Zhu, H.: Ensemble of local and global information for finger-knuckle-print recognition. Pattern Recognition (in Press)
V. N. Vapnik, The nature of statistical learning theory (Spring 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, W., Chen, C., Ricanek, K., Sun, C. (2011). Gender Classification via Global-Local Features Fusion. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds) Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, vol 7098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25449-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-25449-9_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25448-2
Online ISBN: 978-3-642-25449-9
eBook Packages: Computer ScienceComputer Science (R0)