Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gender Classification via Global-Local Features Fusion

  • Conference paper
Biometric Recognition (CCBR 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7098))

Included in the following conference series:

  • 1683 Accesses

Abstract

Computer vision based gender classification is an interesting and challenging research topic in visual surveillance and human-computer interaction systems. In this paper, based on the results of psychophysics and neurophysiology studies that both local and global information is crucial for the image perception, we present an effective global-local features fusion (GLFF) method for gender classification. First, the global features are extracted based on active appearance models (AAM) and the local features are extracted by LBP operator. Second, the global features and local features are fused by sequent selection for gender classification. Third, gender is predicted based on the selected features via support vector machines (SVM). The experimental results show that the proposed local-global information combination scheme could significantly improve the gender classification accuracy obtained by either local or global features, leading to promising performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albert, A.M., Ricanek, K., Patterson, E.: A review of the literature on the aging adult skull and face: Implications for forensic science research and applications. Forensic Science International 172, 1–9 (2007)

    Article  Google Scholar 

  2. Makinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned face. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541–547 (2008)

    Article  Google Scholar 

  3. Bekios-Calfa, J., Buenaposada, J.M., Baumela, L.: Revisiting linear discriminant techniques in gender recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 858–864 (2011)

    Article  Google Scholar 

  4. Baluja, S., Rowley, H.: Boosting sex identification performance. IJCV 71(1), 111–119 (2007)

    Article  Google Scholar 

  5. Wild, H.A., Barrett, S.E., Spence, M.J., et al.: Recognition and sex categorization of adults’ and children’s face: examining performance in the absence of sexstereotyped cues. J. off Exp. Child Psychology 77, 269–291 (2000)

    Article  Google Scholar 

  6. Brucelf, V., et al.: Sex discrimination: how do we tell the difference between male and female face? Perception 22, 131–152 (1993)

    Article  Google Scholar 

  7. Otoole, A., et al.: Sex classification is better with three dimensional head structure than with image intensity information. Perception 26, 75–84 (1997)

    Article  Google Scholar 

  8. Yang, M.H., Moghaddam, B.: Gender classification using support vector machines. In: ICIP, vol. 2, pp. 471–474 (2000)

    Google Scholar 

  9. Gutta, S., Wechsler, H.: Gender and ethnic classifications of human faces using hybrid classifiers. In: Proceedings 1999 International Joint Conference on Neural Networks, pp. 4084–4089 (1999)

    Google Scholar 

  10. Yang, Z., Li, M., Ai, H.: An experimental study on automatic face gender classification. In: ICPR, pp. 1099–1102 (2006)

    Google Scholar 

  11. Gao, W., Ai, H.: Face Gender Classification on Consumer Images in a Multiethnic Environment. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 169–178. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Guo, G.D., Dyer, C., Fu, Y., Huang, T.S.: Is gender recognition influenced by age? In: IEEE International Workshop on Human-Computer Interaction (HCI 2009), in conjunction with ICCV 2009 (2009)

    Google Scholar 

  13. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)

    Google Scholar 

  14. Wang, Y., Ricanek, K., Chen, C., Chang, Y.: Gender classification from infants to seniors. In: Proceedings of the IEEE Conference on Biometrics, Theory, Application and Systems (2010)

    Google Scholar 

  15. Ricanek, K., Wang, Y., Chen, C., Simmons, S.J.: Generalized multi-ethnic face age-estimation. In: IEEE Conf. on Biometrics: Theory, Applications and Systems (2009)

    Google Scholar 

  16. Chen, C., Chang, Y., Ricanek, K., Wang, Y.: Face age estimation using model selection. In: CVPRW (2010)

    Google Scholar 

  17. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  18. Lian, H.-C., Lu, B.-L.: Multi-View Gender Classification Using Local Binary Patterns and Support Vector Machines. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 202–209. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Fang, Y., Wang, Z.: Improving lbp features for gender classification. In: ICWAPR (2008)

    Google Scholar 

  20. Jabid, T., Kabir, M.H., Chae, O.: Gender classification using local directional descriptor. In: ICPR (2010)

    Google Scholar 

  21. Mahalingam, G., Kambhamettu, C.: Can discriminative cues aid face recognition across age? In: FG (2011)

    Google Scholar 

  22. Sun, Z., Wang, Y., Tan, T., Cui, J.: Cascading statistical and structural classifiers for iris recognition. In: ICPR (2004)

    Google Scholar 

  23. Su, Y., Shan, S., Chen, X., Gao, W.: Hierarchical ensemble of global and local classifiers for face recognition. IEEE Transactions Image Processing 18(8), 1885–1896 (2009)

    Article  MathSciNet  Google Scholar 

  24. Zhang, L., Zhang, L., Zhang, D., Zhu, H.: Ensemble of local and global information for finger-knuckle-print recognition. Pattern Recognition (in Press)

    Google Scholar 

  25. V. N. Vapnik, The nature of statistical learning theory (Spring 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, W., Chen, C., Ricanek, K., Sun, C. (2011). Gender Classification via Global-Local Features Fusion. In: Sun, Z., Lai, J., Chen, X., Tan, T. (eds) Biometric Recognition. CCBR 2011. Lecture Notes in Computer Science, vol 7098. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25449-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25449-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25448-2

  • Online ISBN: 978-3-642-25449-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics