Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Multi-Objective Optimization with an Adaptive Resonance Theory-Based Estimation of Distribution Algorithm: A Comparative Study

  • Conference paper
Learning and Intelligent Optimization (LION 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6683))

Included in the following conference series:

  • 5537 Accesses

Abstract

The introduction of learning to the search mechanisms of optimization algorithms has been nominated as one of the viable approaches when dealing with complex optimization problems, in particular with multi-objective ones. One of the forms of carrying out this hybridization process is by using multi-objective optimization estimation of distribution algorithms (MOEDAs). However, it has been pointed out that current MOEDAs have a intrinsic shortcoming in their model-building algorithms that hamper their performance.

In this work we argue that error-based learning, the class of learning most commonly used in MOEDAs is responsible for current MOEDA underachievement. We present adaptive resonance theory (ART) as a suitable learning paradigm alternative and present a novel algorithm called multi-objective ART-based EDA (MARTEDA) that uses a Gaussian ART neural network for model-building and an hypervolume-based selector as described for the HypE algorithm. In order to assert the improvement obtained by combining two cutting-edge approaches to optimization an extensive set of experiments are carried out. These experiments also test the scalability of MARTEDA as the number of objective functions increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. In: Genetic and Evolutionary Computation, 2nd edn. Springer, New York (2007)

    Google Scholar 

  2. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, vol. 12. Kluwer, Norwell (1999)

    MATH  Google Scholar 

  3. Pareto, V.: Cours D’Économie Politique. F. Rouge, Lausanne (1896)

    Google Scholar 

  4. Purshouse, R.C., Fleming, P.J.: On the evolutionary optimization of many conflicting objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784 (2007)

    Article  Google Scholar 

  5. Stewart, T., Bandte, O., Braun, H., Chakraborti, N., Ehrgott, M., Göbelt, M., Jin, Y., Nakayama, H., Poles, S., Di Stefano, D.: Real-world applications of multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 285–327. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo sampling. In: Beckmann, M., Künzi, H.P., Fandel, G., Trockel, W., Basile, A., Drexl, A., Dawid, H., Inderfurth, K., Kürsten, W., Schittko, U., Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. LNEMS, vol. 634, pp. 313–326. Springer, Berlin (2010)

    Chapter  Google Scholar 

  8. Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2008)

    Google Scholar 

  9. Deb, K., Saxena, D.K.: Searching for Pareto–optimal solutions through dimensionality reduction for certain large–dimensional multi–objective optimization problems. In: 2006 IEEE Conference on Evolutionary Computation (CEC 2006), pp. 3352–3360. IEEE Press, Piscataway (2006)

    Google Scholar 

  10. Brockhoff, D., Zitzler, E.: Dimensionality reduction in multiobjective optimization: The minimum objective subset problem. In: Waldmann, K.H., Stocker, U.M. (eds.) Operations Research Proceedings 2006, pp. 423–429. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Brockhoff, D., Saxena, D.K., Deb, K., Zitzler, E.: On handling a large number of objectives a posteriori and during optimization. In: Knowles, J., Corne, D., Deb, K. (eds.) Multi–Objective Problem Solving from Nature: From Concepts to Applications. Natural Computing Series, pp. 377–403. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Corne, D.W.: Single objective = past, multiobjective = present,??? = future. In: Michalewicz, Z. (ed.) 2008 IEEE Conference on Evolutionary Computation (CEC), Part of 2008 IEEE World Congress on Computational Intelligence (WCCI 2008). IEEE Press, Piscataway (2008)

    Google Scholar 

  13. Michalski, R.S.: Learnable evolution model: Evolutionary processes guided by machine learning. Machine Learning 38, 9–40 (2000)

    Article  MATH  Google Scholar 

  14. Sheri, G., Corne, D.W.: The simplest evolution/learning hybrid: LEM with KNN. In: IEEE World Congress on Computational Intelligence, pp. 3244–3251. IEEE Press, Hong Kong (2008)

    Google Scholar 

  15. Sheri, G., Corne, D.W.: Learning-assisted evolutionary search for scalable function optimization: LEM(ID3). In: IEEE World Congress on Computational Intelligence. IEEE Press, Barcelona (2010)

    Google Scholar 

  16. Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.): Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  17. Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution algorithms. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. SCI, pp. 223–248. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Martí, L., García, J., Berlanga, A., Coello Coello, C.A., Molina, J.M.: On current model-building methods for multi-objective estimation of distribution algorithms: Shortcommings and directions for improvement. Technical Report GIAA2010E001, Grupo de Inteligencia Artificial Aplicada, Universidad Carlos III de Madrid, Colmenarejo, Spain (2010)

    Google Scholar 

  19. Grossberg, S.: Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and Motor Control. Reidel, Boston (1982)

    Book  MATH  Google Scholar 

  20. Sarle, W.S.: Why statisticians should not FART. Technical report, SAS Institute, Cary, NC (1995)

    Google Scholar 

  21. Williamson, J.R.: Gaussian ARTMAP: A neural network for fast incremental learning of noisy multidimensional maps. Neural Networks 9, 881–897 (1996)

    Article  Google Scholar 

  22. Martí, L., García, J., Berlanga, A., Molina, J.M.: Moving away from error-based learning in multi-objective estimation of distribution algorithms. In: Branke, J., Alba, E., Arnold, D., Bongard, J., Brabazon, A., Butz, M.V., Clune, J., Cohen, M., Deb, K., Engelbrecht, A., Krasnogor, N., Miller, J., O’Neill, M., Sastry, K., Thierens, D., Vanneschi, L., van Hemert, J., Witt, C. (eds.) GECCO 2010: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 545–546. ACM Press, New York (2010)

    Google Scholar 

  23. Ahn, C.W., Ramakrishna, R.S.: Multiobjective real-coded Bayesian optimization algorithm revisited: Diversity preservation. In: GECCO 2007: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 593–600. ACM Press, New York (2007)

    Google Scholar 

  24. Shapiro, J.: Diversity loss in general estimation of distribution algorithms. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 92–101. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Yuan, B., Gallagher, M.: On the importance of diversity maintenance in estimation of distribution algorithms. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 719–726. ACM Press, New York (2005)

    Google Scholar 

  26. Peña, J.M., Robles, V., Larrañaga, P., Herves, V., Rosales, F., Pérez, M.S.: GA-EDA: Hybrid evolutionary algorithm using genetic and estimation of distribution algorithms. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE 2004. LNCS (LNAI), vol. 3029, pp. 361–371. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation for the maximum clique problem. IEEE Transactions on Evolutionary Computation 9(2), 192–200 (2005)

    Article  Google Scholar 

  28. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  29. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Transactions on Evolutionary Computation 10(1), 29–38 (2006)

    Article  Google Scholar 

  30. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension–sweep algorithm for the hypervolume indicator. In: 2006 IEEE Congress on Evolutionary Computation (CEC 2006), pp. 1157–1163 (2006)

    Google Scholar 

  31. Beume, N., Rudolph, G.: Faster S–metric calculation by considering dominated hypervolume as Klee’s measure problem. In: Kovalerchuk, B. (ed.) Proceedings of the Second IASTED International Conference on Computational Intelligence, pp. 233–238. IASTED/ACTA Press (2006)

    Google Scholar 

  32. Beume, N.: S–metric calculation by considering dominated hypervolume as Klee’s measure problem. Evolutionary Computation 17(4), 477–492 (2009); PMID: 19916778

    Article  Google Scholar 

  33. Bringmann, K., Friedrich, T.: Approximating the volume of unions and intersections of high–dimensional geometric objects. Computational Geometry 43(6-7), 601–610 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Papadimitriou, C.M.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  35. Deolalikar, V.: P≠NP. Technical report, Hewlett Packard Research Labs, Palo Alto, CA, USA (2010)

    Google Scholar 

  36. Box, G.E.P., Muller, M.E.: A note on the generation of random normal deviates. Annals of Mathematical Statistics 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  37. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  MATH  Google Scholar 

  38. Martí, L., García, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: Scalable multiobjective optimization with a neural estimation of distribution algorithm. In: Keizer, M., Antoniol, G., Congdon, C., Deb, K., Doerr, B., Hansen, N., Holmes, J., Hornby, G., Howard, D., Kennedy, J., Kumar, S., Lobo, F., Miller, J., Moore, J., Neumann, F., Pelikan, M., Pollack, J., Sastry, K., Stanley, K., Stoica, A., Talbi, E.G., Wegener, I. (eds.) GECCO 2008: 10th Annual Conference on Genetic and Evolutionary Computation, pp. 689–696. ACM Press, New York (2008); EMO Track “Best Paper” Nominee

    Google Scholar 

  39. Bosman, P.A.N., Thierens, D.: The naive MIDEA: A baseline multi–objective EA. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 428–442. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  40. Ahn, C.W.: Advances in Evolutionary Algorithms. In: Theory, Design and Practice. Springer, Heidelberg (2006) ISBN 3-540-31758-9

    Google Scholar 

  41. Beume, N., Naujoks, B., Emmerich, M.: SMS–EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  42. Knowles, J., Thiele, L., Zitzler, E.: A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006)

    Google Scholar 

  43. Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis. Wadsworth, Belmont (1983)

    MATH  Google Scholar 

  44. Mann, H.B., Whitney, D.R.: On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 50–60 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bader, J.: Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods. PhD thesis, ETH Zurich, Switzerland (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martí, L., García, J., Berlanga, A., Molina, J.M. (2011). Multi-Objective Optimization with an Adaptive Resonance Theory-Based Estimation of Distribution Algorithm: A Comparative Study. In: Coello, C.A.C. (eds) Learning and Intelligent Optimization. LION 2011. Lecture Notes in Computer Science, vol 6683. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25566-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25566-3_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25565-6

  • Online ISBN: 978-3-642-25566-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics