Abstract
In this paper, we present an efficient method for recognition of basic characters (vowels) of handwritten Kannada text, which is thinning free and independent of size of handwritten characters. Crack codes and Fourier descriptors are used for computing features. The recognition accuracy has been studied by comparing the performances of well known K-NN and SVM classifiers. Five-fold cross validation technique is used for result computation. Experiments are performed on handwritten Kannada vowels consisting of 6500 images with 500 samples for each class. The mean performance of the system with these two shape based features together is 91.24% and 93.73% for K-NN and SVM classifiers, respectively, demonstrating the fact that SVM performs better over K-NN classifier. The system methodology can be extended for the recognition of remaining set of Kannada characters.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York
Plamondon, R., Srihari, S.N.: On-Line and off-line handwritten recognition: A comprehensive survey. IEEE Trans. on PAMI 22, 62–84 (2000)
Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-A Survey. Pattern Recognition 29(4), 641–662 (1996)
Liu, C.-L., Jaeger, S., Nakagawa, M.: Online recognition of Chinese characters: The-state-of-the-art. IEEE Trans. on PAMI 26, 198–213 (2004)
Yamada, K.: Optimal sampling intervals for Gabor features and printed Japanese character recognition. In: Proceedings of the Third International Conference on Document Analysis and Recognition, August 14-15, vol. 1, p. 150 (1995)
Cheung, A., Bennamoun, M., Bergmann, N.W.: An Arabic Optical Character Recognition system using Recognition based Segmentation. Pattern Recognition 34(2), 215–233 (2001)
Pal, U., Chaudhuri, B.B.: Indian script character recognition: a survey. Pattern Recognition 37(9), 1887–1899 (2004)
Holambe, A.N., Thool, R.C., Jagade, S.M.: Printed and Handwritten Character & Number Recognition of Devanagari Script using Gradient Features. International Journal of Computer Applications 2(9), 975–8887 (2010)
Pal, U., Wakabayashi, T., Kimura, F.: Handwritten Bangla Compound Character Recognition Using Gradient Feature. In: 10th International Conference on Information Technology (ICIT 2007), December 17-20, pp. 208–213 (2007)
Bhattacharya, U., Shridhar, M., Parui, S.K.: On Recognition of Handwritten Bangla Characters. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 817–828. Springer, Heidelberg (2006)
Sharma, N., Pal, U., Kimura, F., Pal, S.: Recognition of Off-Line Handwritten Devnagari Characters Using Quadratic Classifier. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 805–816. Springer, Heidelberg (2006)
Hanmandlu, M., Ramana Murthy, O.V., Madasu, V.K.: Fuzzy Model based recognition of handwritten Hindi characters. In: 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, December 3-5, pp. 454–461. IEEE (2007)
Rajashekararadhya, S.V., Ranjan, V.: Zone based Feature Extraction Algorithm for Handwritten Numeral Recognition of Kannada Script. In: Proc. of IEEE International Advance Computing Conference (IACC 2009), pp. 525–528 (2009)
Rajput, G.G., Horakeri, R., Mali, S.M.: Handwritten Numerals Recognition Using Shape Descriptors for Devanagari and Kannada Scripts. In: Li, Y. (ed.) Proc. of IEEE 2011 International Conference on Digital Convergence (ICDC 2011), pp. 1–7 (2011)
Pal, U., Sharma, N., Wakabayashi, T., Kimura, F.: Handwritten Character Recognition of Popular South Indian Scripts. In: Doermann, D., Jaeger, S. (eds.) SACH 2006. LNCS, vol. 4768, pp. 251–264. Springer, Heidelberg (2008)
Niranjan, S.K., Kumar, V., Hemantha Kumar, G., Aradhya, M.: FLD based Unconstrained Handwritten Kannada Character Recognition. International Journal of Database Theory and Application 2(3) (September 2009)
Dhandra, B.V., Hangarge, M., Mukarambi, G.: Spatial Features for Handwritten Kannada and English Character Recognition. IJCA, Special Issue on RTIPPR (3), 146–151 (2010)
Ragha, L.R., Sasikumar, M.: Feature Analysis for Handwritten Kannada Kagunita Recognition. International Journal of Computer Theory and Engineering, IACSIT 3(1), 1793–8201 (2011)
Gonzalez, R.C.G., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson Education Asia (2002)
Rajput, G.G., Horakeri, R., Chandrakant, S.: Printed and Handwritten Kannada Numeral Recognition Using Crack Codes and Fourier Descriptors. IJCA, Special Issue on RTIPPR (1), 53–58 (2010)
Smach, F., Lemaître, C., Gauthier, J.-P., Miteran, J., Atri, M.: Generalized Fourier Descriptors with applications to Objects Recognition in SVM Context. J. Math. Imaging Vis. 30, 43–71 (2008)
Mahmoud, S.A., Mahmoud, A.S.: Arabic Character Recognition using Modified Fourier Spectrum vs. Fourier Descriptors. Cybernetics and Systems 40(3), 189–210 (2009)
Vapnik, V.N.: The Statistical Learning Theory. Springer, Berlin (1998)
Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rajput, G.G., Horakeri, R. (2011). Handwritten Kannada Vowel Character Recognition Using Crack Codes and Fourier Descriptors. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2011. Lecture Notes in Computer Science(), vol 7080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25725-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-25725-4_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25724-7
Online ISBN: 978-3-642-25725-4
eBook Packages: Computer ScienceComputer Science (R0)