Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Handwritten Kannada Vowel Character Recognition Using Crack Codes and Fourier Descriptors

  • Conference paper
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7080))

Abstract

In this paper, we present an efficient method for recognition of basic characters (vowels) of handwritten Kannada text, which is thinning free and independent of size of handwritten characters. Crack codes and Fourier descriptors are used for computing features. The recognition accuracy has been studied by comparing the performances of well known K-NN and SVM classifiers. Five-fold cross validation technique is used for result computation. Experiments are performed on handwritten Kannada vowels consisting of 6500 images with 500 samples for each class. The mean performance of the system with these two shape based features together is 91.24% and 93.73% for K-NN and SVM classifiers, respectively, demonstrating the fact that SVM performs better over K-NN classifier. The system methodology can be extended for the recognition of remaining set of Kannada characters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York

    Google Scholar 

  2. Plamondon, R., Srihari, S.N.: On-Line and off-line handwritten recognition: A comprehensive survey. IEEE Trans. on PAMI 22, 62–84 (2000)

    Article  Google Scholar 

  3. Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-A Survey. Pattern Recognition 29(4), 641–662 (1996)

    Article  Google Scholar 

  4. Liu, C.-L., Jaeger, S., Nakagawa, M.: Online recognition of Chinese characters: The-state-of-the-art. IEEE Trans. on PAMI 26, 198–213 (2004)

    Article  Google Scholar 

  5. Yamada, K.: Optimal sampling intervals for Gabor features and printed Japanese character recognition. In: Proceedings of the Third International Conference on Document Analysis and Recognition, August 14-15, vol. 1, p. 150 (1995)

    Google Scholar 

  6. Cheung, A., Bennamoun, M., Bergmann, N.W.: An Arabic Optical Character Recognition system using Recognition based Segmentation. Pattern Recognition 34(2), 215–233 (2001)

    Article  MATH  Google Scholar 

  7. Pal, U., Chaudhuri, B.B.: Indian script character recognition: a survey. Pattern Recognition 37(9), 1887–1899 (2004)

    Article  Google Scholar 

  8. Holambe, A.N., Thool, R.C., Jagade, S.M.: Printed and Handwritten Character & Number Recognition of Devanagari Script using Gradient Features. International Journal of Computer Applications 2(9), 975–8887 (2010)

    Article  Google Scholar 

  9. Pal, U., Wakabayashi, T., Kimura, F.: Handwritten Bangla Compound Character Recognition Using Gradient Feature. In: 10th International Conference on Information Technology (ICIT 2007), December 17-20, pp. 208–213 (2007)

    Google Scholar 

  10. Bhattacharya, U., Shridhar, M., Parui, S.K.: On Recognition of Handwritten Bangla Characters. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 817–828. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Sharma, N., Pal, U., Kimura, F., Pal, S.: Recognition of Off-Line Handwritten Devnagari Characters Using Quadratic Classifier. In: Kalra, P.K., Peleg, S. (eds.) ICVGIP 2006. LNCS, vol. 4338, pp. 805–816. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Hanmandlu, M., Ramana Murthy, O.V., Madasu, V.K.: Fuzzy Model based recognition of handwritten Hindi characters. In: 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications, December 3-5, pp. 454–461. IEEE (2007)

    Google Scholar 

  13. Rajashekararadhya, S.V., Ranjan, V.: Zone based Feature Extraction Algorithm for Handwritten Numeral Recognition of Kannada Script. In: Proc. of IEEE International Advance Computing Conference (IACC 2009), pp. 525–528 (2009)

    Google Scholar 

  14. Rajput, G.G., Horakeri, R., Mali, S.M.: Handwritten Numerals Recognition Using Shape Descriptors for Devanagari and Kannada Scripts. In: Li, Y. (ed.) Proc. of IEEE 2011 International Conference on Digital Convergence (ICDC 2011), pp. 1–7 (2011)

    Google Scholar 

  15. Pal, U., Sharma, N., Wakabayashi, T., Kimura, F.: Handwritten Character Recognition of Popular South Indian Scripts. In: Doermann, D., Jaeger, S. (eds.) SACH 2006. LNCS, vol. 4768, pp. 251–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Niranjan, S.K., Kumar, V., Hemantha Kumar, G., Aradhya, M.: FLD based Unconstrained Handwritten Kannada Character Recognition. International Journal of Database Theory and Application 2(3) (September 2009)

    Google Scholar 

  17. Dhandra, B.V., Hangarge, M., Mukarambi, G.: Spatial Features for Handwritten Kannada and English Character Recognition. IJCA, Special Issue on RTIPPR (3), 146–151 (2010)

    Google Scholar 

  18. Ragha, L.R., Sasikumar, M.: Feature Analysis for Handwritten Kannada Kagunita Recognition. International Journal of Computer Theory and Engineering, IACSIT 3(1), 1793–8201 (2011)

    Google Scholar 

  19. Gonzalez, R.C.G., Woods, R.E.: Digital Image Processing, 2nd edn. Pearson Education Asia (2002)

    Google Scholar 

  20. Rajput, G.G., Horakeri, R., Chandrakant, S.: Printed and Handwritten Kannada Numeral Recognition Using Crack Codes and Fourier Descriptors. IJCA, Special Issue on RTIPPR (1), 53–58 (2010)

    Google Scholar 

  21. Smach, F., Lemaître, C., Gauthier, J.-P., Miteran, J., Atri, M.: Generalized Fourier Descriptors with applications to Objects Recognition in SVM Context. J. Math. Imaging Vis. 30, 43–71 (2008)

    Article  MathSciNet  Google Scholar 

  22. Mahmoud, S.A., Mahmoud, A.S.: Arabic Character Recognition using Modified Fourier Spectrum vs. Fourier Descriptors. Cybernetics and Systems 40(3), 189–210 (2009)

    Article  MATH  Google Scholar 

  23. Vapnik, V.N.: The Statistical Learning Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  24. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajput, G.G., Horakeri, R. (2011). Handwritten Kannada Vowel Character Recognition Using Crack Codes and Fourier Descriptors. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2011. Lecture Notes in Computer Science(), vol 7080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25725-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25725-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25724-7

  • Online ISBN: 978-3-642-25725-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics