Abstract
The Tragedy of the Commons involves a community utilizing a shared resource (the “commons”) which can sustain a maximum load capacity beyond which its performance degrades. If utility received is proportional to the load applied on the system, individuals will maximize their applied load. Such greedy behavior will eventually lead to the total load exceeding the capacity of the commons. Thereafter, individuals will get less for adding more load on the system, which signifies a social dilemma. We develop a distributed solution approach to the tragedy of the commons that require individuals in the society to adapt their aspirations and apply loads based on their own aspirations. An aspiration level corresponds to the satisficing return for an individual, which is adjusted based on experience. In our model, individuals choose the load applied on the system based on their aspiration levels, thereby affecting the stability and performance of the “commons”. We evaluate two different aspiration and load adjustment policies as well as effects of asynchronous decision making on the stability and performance of populations of varying sizes. Interesting results include mitigation of free-riding for larger populations. We also develop a mathematical model to predict the convergence time for such populations and verify the predictions experimentally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arora, N., Sen, S.: Resolving social dilemmas using genetic algorithms: Initial results. In: Proceedings of the 7th International Conference on Genetic Algorithms, pp. 689–695. Morgan Kaufman, San Mateo (1997)
Cammarata, S., McArthur, D., Steeb, R.: Strategies of cooperation in distributed problem solving. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, Karlsruhe, Federal Republic of Germany, pp. 767–770 (August 1983)
de Cote, E.M., et al.: Learning to cooperate in multi-agent social dilemmas. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 783–785 (2006)
Durfee, E.H., Lesser, V.R.: Using partial global plans to coordinate distributed problem solvers. In: Proceedings of the Tenth International Joint Conference on Artificial Intelligence, Milan, Italy, pp. 875–883 (August 1987)
Diecidue, E., van de Ven, J.: Aspiration Level, Probability of Success and Failure, and Expected Utility. International Economic Review 49(2), 683–700 (2008)
Glance, N.S., Hogg, T.: Dilemmas in computational societies. In: First International Conference on Multiagent Systems, pp. 117–124. AAAI Press/MIT Press, Menlo Park, CA (1995)
Glance, N.S., Huberman, B.A.: The dynamics of social dilemmas. Scientific American 270(3), 76–81 (1994)
Gilboa, I., Schmeidler, D.: Reaction to price changes and aspiration level adjustments. Review of Economic Design 6, 215–223 (2001)
Hardin, G.: The tragedy of the commons. Science 162, 1243–1248 (1968)
Hogg, T., Huberman, B.A.: Controlling chaos in distributed systems. IEEE Transactions on Systems, Man, and Cybernetics 21(6), 1325–1332 (1991) Special Issue on Distributed AI
Irvine, A.D.: How Braess’ paradox solves Newcomb’s problem. International Studies in the Philosophy of Science 7(2), 141–160 (1993)
Ito, A.: How do autonomous agents solve social dilemmas? In: Cavedon, L., Wobcke, W., Rao, A. (eds.) PRICAI-WS 1996. LNCS, vol. 1209, pp. 177–188. Springer, Heidelberg (1997)
Kollock, P.: Social Dilemmas: The Anatomy of Cooperation. Annual Review of Sociology 24, 183–214 (1998)
Lloyd, W.F.: Two Lectures on the Checks to Population. Oxford University Press, Oxford (1833)
Muhsam, H.V.: A world population policy for the World Population Year. Journal of Peace Research 1(2), 97–99 (1973)
Macy, M.W., Flache, A.: Learning Dynamics in Social Dilemmas. Proceedings of the National Academy of Sciences of the United States of America, 7229–7236 (May 14, 2002)
Mundhe, M., Sen, S.: Evolving agent societies that avoid social dilemmas. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2000, pp. 809–816 (2000)
Sandholm, T.W., Lesser, V.R.: Equilibrium analysis of the possibilities of unenforced exchange in multiagent systems. In: 14th International Joint Conference on Artificial Intelligence, pp. 694–701. Morgan Kaufmann, San Francisco (1995)
Smith, A.: The Wealth of Nations, 10th edn. A. Strahan, Printer-stree; for T. Cadell Jun. and W. Davies, in the Strand, Boston, MA (1802)
Tumer, K., Wolpert, D.H.: Collective intelligence and Braess’ paradox. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 104–109. AAAI Press, Menlo Park (2000)
Turner, R.M.: The tragedy of the commons and distributed AI systems. In: Working Papers of the 12th International Workshop on Distributed Artificial Intelligence, pp. 379–390 (May 1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sen, O., Sen, S. (2012). Averting the Tragedy of the Commons by Adapting Aspiration Levels. In: Desai, N., Liu, A., Winikoff, M. (eds) Principles and Practice of Multi-Agent Systems. PRIMA 2010. Lecture Notes in Computer Science(), vol 7057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25920-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-25920-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-25919-7
Online ISBN: 978-3-642-25920-3
eBook Packages: Computer ScienceComputer Science (R0)