Abstract
Cloud computing has been a popular topic in recent years. How the system used in large-scale cloud computing to build large-scale distributed storage cluster and the provision of services become very popular and provoke animated discussion. It is an inevitable trend to either the enterprise or the individual. The cloud of network services can be divided into three categories: Software as a Service (SaaS), Platform as a Service (PaaS), and infrastructure as a service (IaaS). Among these, the Software as a Service (SaaS) allows users to run applications remotely from the cloud. Platform as a Service (PaaS) includes the operating system and custom application-specific software. And Infrastructure as a Service (IaaS) is the computing resources as a service, including some virtual machines, hardware resource units. This research paper is about how to build the KVM environment in the cloud system and operation, and using the KVM to provide a virtual environment for users. In the user interface part, the work is able to reduce the complexity of cloud resources access. We use the web interface which is easy to understand and accessible for users in the operations as well. About the experimental results, the performance of physical machine and KVM virtual machine are compared and analyzed.
* This work is supported in part by the National Science Council, Taiwan R.O.C., under grants no. NSC 100-2218-E-029-001 and NSC 100-2218-E-029-004.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nagarajan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance for HPC with Xen virtualization. In: Proceedings of the 21st Annual International Conference on Supercomputing, Seattle, Washington, June 17-21, pp. 23–32 (2007)
Zhang, B., Wang, X., Lai, R., Yang, L., Wang, Z., Luo, Y., Li, X.: Evaluating and Optimizing I/O Virtualization in Kernel-based Virtual Machine (KVM). In: NPC 2010 Proceedings of the 2010 IFIP International Conference on Network and Parallel Computing, September 13-15, pp. 220–231 (2010)
Matthews, C., Coady, Y.: Virtualized Recomposition: Cloudy or Clear? In: ICSE Workshop on Software Engineering Challenges of Cloud Computing, May 23, pp. 38–44 (2009)
Tseng, C.-H., Yang, C.-T., Chou, K.-Y., Tsaur, S.-C.: Design and Implementation of a Virtualized Cluster Computing Environment on Xen. In: Presented at the The second International Conference on High Performance Computing and Applications, HPCA (2009)
Waldspurger, C.A.: Memory Resource Management in VMware ESX Server. SIGOPS Oper. Rev. 36(SI), 181–194 (2002)
Bellard, F.: Qemu, a fast and portable dynamic translator. In: Proceedings of the USENIX 2005 Annual Technical Conference, FREENIX Track, pp. 41–41 (2005)
Kecskemeti, G., Terstyanszky, G., Kacsuk, P., Nemetha, Z.: An approach for virtual appliance distribution for service deployment. Future Generation Computer Systems 27(3), 280–289 (2011)
Raj, H., Schwan, K.: High Performance and Scalable I/O Virtualization via Self-Virtualized Devices. In: The Proceedings of HPDC 2007, pp. 179–188 (2007)
Van Nguyen, H., Tran, F.D., Menaud, J.-M.: Autonomic virtual resource management for service hosting platforms. In: ICSE Workshop on Software Engineering Challenges of Cloud Computing, May 23, pp. 1–8 (2009)
Oi, H., Nakajima, F.: Performance Analysis of Large Receive Offload in a Xen Virtualized System. In: Proceedings of 2009 International Conference on Computer Engineering and Technology (ICCET 2009), Singapore, vol. 1, pp. 475–480 (January 2009)
Smith, J.E., Nair, R.: The Architecture of Virtual Machines. Computer 38(5), 32–38 (2005)
Paul Willmann, J.S., Carr, D., Menon, A., Rixner, S., Cox, A.L., Zwaenepoel, W.: Concurrent Direct Network Access for Virtual Machine Monitors. In: The Second International Conference on High Performance Computing and Applications, HPCA, pp. 306–317 (2007)
Kertesz, A., Kacsuk, P.: Grid Interoperability Solutions in Grid Resource Management. Systems Journal 3(1), 131–141 (2009)
Adams, K., Agesen, O.: A Comparison of Software and Hardware Techniques for x86 Virtualization. In: ASPLOS-XII: Proceedings of the 12th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 2–13. ACM Press, New York (2006)
Rodero-Merino, L., Vaquero, L.M., Gil, V., Galán, F., Fontán, J., Montero, R.S., Llorente, I.M.: From infrastructure delivery to service management in clouds. Future Generation Computer Systems 26(8), 1226–1240 (2010)
Milojičić, D., Llorente, I.M., Montero, R.S.: OpenNebula: A Cloud Management Tool. IEEE Internet Computing 15(2), 11–14 (2011)
Luszczek, P., et al.: Introduction to the HPC Challenge Benchmark Suite. LBNL-57493 (2005)
Endo, P.T., Gonçalves, G.E., Kelner, J., Sadok, D.: A Survey on Open-source Cloud Computing Solutions. In: VIII Workshop Em Clouds, Grids e Aplicações, pp. 3–16 (2011)
Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the Art of Virtualization. In: SOSP 2003: Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, pp. 164–177. ACM Press, New York (2003)
Qumranet, White Paper: KVM Kernel-based Virtualization Driver. Qumranet, Tech. Rep (2006)
Borja Sotomayor, R.S.M., Llorente, I.M., Foster, I.: Virtual Infrastructure Management in Private and Hybrid Clouds. IEEE Internet Computing 13, 16–23 (2009)
Soltesz, S., Potzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based Operating System Virtualization: A Scalable, High-performance Alternative to Hypervisors. In: EuroSys 2007, pp. 275–287 (2007)
Hagen, W.V.: Professional Xen Virtualization. Wrox Press Ltd., Birmingham (2008)
Emeneker, W., Stanzione, D.: HPC Cluster Readiness of Xen and User Mode Linux. In: 2006 IEEE International Conference on Cluster Computing, pp. 1–8 (2006)
Li, Y., Yang, Y., Ma, N., Zhou, L.: A hybrid load balancing strategy of sequential tasks for grid computing environments. Future Generation Computer Systems, 819–828 (2009)
Zhang, X., Dong, Y.: Optimizing Xen VMM Based on Intel Virtualization Technology. In: 2008 International Conference on Internet Computing in Science and Engineering (ICICSE 2008), pp. 367–374 (2008)
Dong, Y., Li, S., Mallick, A., Nakajima, J., Tian, K., Xu, X., Yang, F., Yu, W.: Extending Xen with Intel Virtualization Technology. Journal, ISSN, Core Software Division, Intel Corporation, 1–14, August 10 (2006)
Hai, Z., et al.: An Approach to Optimized Resource Scheduling Algorithm for Open-Source Cloud Systems. In: 2010 Fifth Annual, ChinaGrid Conference (ChinaGrid), pp. 124–129 (2010)
Amazon, http://aws.amazon.com/ec2/
Cloud computing, http://en.wikipedia.org/wiki/Cloud_computing
Xen, http://www.xen.org/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, CT., Chen, BH., Chen, WS. (2011). On Implementation of a KVM IaaS with Monitoring System on Cloud Environments. In: Kim, Th., et al. Communication and Networking. FGCN 2011. Communications in Computer and Information Science, vol 265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27192-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-642-27192-2_36
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27191-5
Online ISBN: 978-3-642-27192-2
eBook Packages: Computer ScienceComputer Science (R0)