Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mesh Segmentation and Model Extraction

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

Abstract

High precision laser scanners deliver virtual surfaces of industrial objects whose accuracy must be evaluated. But this requires the automatic detection of reliable components such as facets, cylindric and spherical parts, etc. The method described here finds automatically parts in the surface to which geometric primitives can be fitted. Knowing certain properties of the input object, this primitive fitting helps quantifying the precision of an acquisition process and of the scanned mires. The method combines mesh segmentation with model fitting. The mesh segmentation method is based on the level set tree of a scalar function defined on the mesh. The method is applied with the simplest available intrinsic scalar function on the mesh, the mean curvature. In a first stage a fast algorithm extracts the level sets of the scalar function. Adapting to meshes a well known method for extracting Maximally Stable Extremal Regions from the level set tree on digital images, the method segments automatically the mesh into smooth parts separated by high curvature regions (the edges). This segmentation is followed by a model selection on each part permitting to fit planes, cylinders and spheres and to quantify the overall accuracy of the acquisition process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agathos, E., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3d mesh segmentation methodologies for cad applications. Comput. Aided Des. Appl. 4(6), 827–841 (2007)

    Article  Google Scholar 

  2. Al-Subaihi, I., Watson, G.A.: Algebraic fitting of quadric surfaces to data. Communications in Applied Analysis 9(3/4), 539–548 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. In: SCG 1998: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 39–48. ACM, USA (1998)

    Chapter  Google Scholar 

  4. Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation - a comparative study. In: SMI 2006, p. 7. IEEE Computer Society, Washington, DC, USA (2006)

    Google Scholar 

  5. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22, 181–193 (2006)

    Article  Google Scholar 

  6. Ballester, C., Caselles, V., Monasse, P.: The tree of shapes of an image. Tech. rep. (2001)

    Google Scholar 

  7. Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling (invited paper), pp. 699–716. IEEE Press, Piscataway (2000)

    Google Scholar 

  8. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE TVCG 5, 349–359 (1999)

    Google Scholar 

  9. Cao, X., Shrikhande, N., Hu, G.: Approximate orthogonal distance regression method for fitting quadric surfaces to range data. Pattern Recogn. Lett. 15(8), 781–796 (1994)

    Article  MATH  Google Scholar 

  10. Chaperon, T., Goulette, F.: Extracting cylinders in full 3d data using a random sampling method and the gaussian image. In: Proceedings of the Vision Modeling and Visualization Conference, VMV 2001, Aka GmbH, pp. 35–42 (2001)

    Google Scholar 

  11. Dai, M., Newman, T.S.: Hyperbolic and parabolic quadric surface fitting algorithms - comparison between the least squares approach and the parameter optimization approach. Tech. Rep. TR-UAH-CS-1998-02 (1998)

    Google Scholar 

  12. Desolneux, A., Moisan, L., Morel, J.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  13. Digne, J., Morel, J.M., Audfray, N., Mehdi-Souzani, C.: The level set tree on meshes. In: Proceedings of the Fifth International Symposium on. 3D Data Processing, Visualization and Transmission, Paris, France (May 2010)

    Google Scholar 

  14. Digne, J., Morel, J.M., Souzani, C.M., Lartigue, C.: Scale space meshing of raw data point sets. Computer Graphics Forum (2011)

    Google Scholar 

  15. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D 2001, pp. 49–58. ACM, USA (2001)

    Google Scholar 

  17. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. The Visual Computer 21(8-10), 649–658 (2005)

    Google Scholar 

  18. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: SGP 2006, Eurographics, Switzerland, pp. 61–70 (2006)

    Google Scholar 

  19. Lai, Y.K., Zhou, Q.Y., Hu, S.M., Martin, R.R.: Feature sensitive mesh segmentation. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, SPM 2006, pp. 17–25. ACM, USA (2006)

    Chapter  Google Scholar 

  20. Lavoué, G., Dupont, F., Baskurt, A.: A new cad mesh segmentation method, based on curvature tensor analysis. Comput. Aided Des. 37, 975–987 (2005)

    Article  MATH  Google Scholar 

  21. Ma, W., Kruth, J.P.: Nurbs curve and surface fitting for reverse engineering. The International Journal of Advanced Manufacturing Technology 14, 918–927 (1998)

    Article  Google Scholar 

  22. Mangan, A.P., Whitaker, R.T.: Partitioning 3d surface meshes using watershed segmentation. IEEE TVCG 5(4), 308–321 (1999)

    Google Scholar 

  23. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)

    Google Scholar 

  24. Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Comput. Surv. 34(2), 211–262 (2002)

    Article  Google Scholar 

  25. Piegl, L., Tiller, W.: The NURBS book. Springer, London (1995)

    Book  MATH  Google Scholar 

  26. Shamir, A.: A survey on mesh segmentation techniques. CGF 27 (September 2008)

    Google Scholar 

  27. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. In: CGF, vol. 21, pp. 219–228 (2002)

    Google Scholar 

  28. Simari, P., Kalogerakis, E., Singh, K.: Folding meshes: hierarchical mesh segmentation based on planar symmetry. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 111–119. Eurographics Association, Aire-la-Ville (2006)

    Google Scholar 

  29. Tierny, J., Vandeborre, J.P., Daoudi, M.: Topology driven 3d mesh hierarchical segmentation. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2007, pp. 215–220. IEEE Computer Society, Washington, DC, USA (2007)

    Chapter  Google Scholar 

  30. Várady, T., Kós, G., Benko, P.: Reverse engineering regular objects: Simple segmentation and surface fitting procedures. IJSM (International Journal of Shape Modeling), Procs. of CAGD: New Trends and Applications, Crete 4, 127–142 (1997/1998)

    Google Scholar 

  31. Werghi, N., Fisher, R., Ashbrook, A., Robertson, C.: Faithful recovering of quadric surfaces from 3d range data. In: Proceedings 2nd int. Conf. on 3d Digital Imaging and Modeling, pp. 280–289 (1999)

    Google Scholar 

  32. Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by gaussian curvature. The Visual Computer 21, 659–668 (2005)

    Article  Google Scholar 

  33. Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel, H.P.: Feature sensitive mesh segmentation with mean shift. In: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 238–245. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  34. Zatzarinni, R., Tal, A., Shamir, A.: Relief analysis and extraction. ACM Trans. Graph. 28(5), 1–9 (2009)

    Article  Google Scholar 

  35. Zhang, X., Li, G., Xiong, Y., He, F.: 3D mesh segmentation using mean-shifted curvature. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 465–474. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  36. Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Computers & Graphics 26(5), 733–743 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Digne, J., Morel, JM., Mehdi-Souzani, C., Lartigue, C. (2012). Mesh Segmentation and Model Extraction. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics