Abstract
High precision laser scanners deliver virtual surfaces of industrial objects whose accuracy must be evaluated. But this requires the automatic detection of reliable components such as facets, cylindric and spherical parts, etc. The method described here finds automatically parts in the surface to which geometric primitives can be fitted. Knowing certain properties of the input object, this primitive fitting helps quantifying the precision of an acquisition process and of the scanned mires. The method combines mesh segmentation with model fitting. The mesh segmentation method is based on the level set tree of a scalar function defined on the mesh. The method is applied with the simplest available intrinsic scalar function on the mesh, the mean curvature. In a first stage a fast algorithm extracts the level sets of the scalar function. Adapting to meshes a well known method for extracting Maximally Stable Extremal Regions from the level set tree on digital images, the method segments automatically the mesh into smooth parts separated by high curvature regions (the edges). This segmentation is followed by a model selection on each part permitting to fit planes, cylinders and spheres and to quantify the overall accuracy of the acquisition process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agathos, E., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3d mesh segmentation methodologies for cad applications. Comput. Aided Des. Appl. 4(6), 827–841 (2007)
Al-Subaihi, I., Watson, G.A.: Algebraic fitting of quadric surfaces to data. Communications in Applied Analysis 9(3/4), 539–548 (2005)
Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. In: SCG 1998: Proceedings of the Fourteenth Annual Symposium on Computational Geometry, pp. 39–48. ACM, USA (1998)
Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., Tal, A.: Mesh segmentation - a comparative study. In: SMI 2006, p. 7. IEEE Computer Society, Washington, DC, USA (2006)
Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22, 181–193 (2006)
Ballester, C., Caselles, V., Monasse, P.: The tree of shapes of an image. Tech. rep. (2001)
Barron, A., Rissanen, J., Yu, B.: The minimum description length principle in coding and modeling (invited paper), pp. 699–716. IEEE Press, Piscataway (2000)
Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE TVCG 5, 349–359 (1999)
Cao, X., Shrikhande, N., Hu, G.: Approximate orthogonal distance regression method for fitting quadric surfaces to range data. Pattern Recogn. Lett. 15(8), 781–796 (1994)
Chaperon, T., Goulette, F.: Extracting cylinders in full 3d data using a random sampling method and the gaussian image. In: Proceedings of the Vision Modeling and Visualization Conference, VMV 2001, Aka GmbH, pp. 35–42 (2001)
Dai, M., Newman, T.S.: Hyperbolic and parabolic quadric surface fitting algorithms - comparison between the least squares approach and the parameter optimization approach. Tech. Rep. TR-UAH-CS-1998-02 (1998)
Desolneux, A., Moisan, L., Morel, J.: From Gestalt Theory to Image Analysis: A Probabilistic Approach. Springer, Heidelberg (2008)
Digne, J., Morel, J.M., Audfray, N., Mehdi-Souzani, C.: The level set tree on meshes. In: Proceedings of the Fifth International Symposium on. 3D Data Processing, Visualization and Transmission, Paris, France (May 2010)
Digne, J., Morel, J.M., Souzani, C.M., Lartigue, C.: Scale space meshing of raw data point sets. Computer Graphics Forum (2011)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D 2001, pp. 49–58. ACM, USA (2001)
Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. The Visual Computer 21(8-10), 649–658 (2005)
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: SGP 2006, Eurographics, Switzerland, pp. 61–70 (2006)
Lai, Y.K., Zhou, Q.Y., Hu, S.M., Martin, R.R.: Feature sensitive mesh segmentation. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, SPM 2006, pp. 17–25. ACM, USA (2006)
Lavoué, G., Dupont, F., Baskurt, A.: A new cad mesh segmentation method, based on curvature tensor analysis. Comput. Aided Des. 37, 975–987 (2005)
Ma, W., Kruth, J.P.: Nurbs curve and surface fitting for reverse engineering. The International Journal of Advanced Manufacturing Technology 14, 918–927 (1998)
Mangan, A.P., Whitaker, R.T.: Partitioning 3d surface meshes using watershed segmentation. IEEE TVCG 5(4), 308–321 (1999)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: British Machine Vision Conference, vol. 1, pp. 384–393 (2002)
Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Comput. Surv. 34(2), 211–262 (2002)
Piegl, L., Tiller, W.: The NURBS book. Springer, London (1995)
Shamir, A.: A survey on mesh segmentation techniques. CGF 27 (September 2008)
Shlafman, S., Tal, A., Katz, S.: Metamorphosis of polyhedral surfaces using decomposition. In: CGF, vol. 21, pp. 219–228 (2002)
Simari, P., Kalogerakis, E., Singh, K.: Folding meshes: hierarchical mesh segmentation based on planar symmetry. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, pp. 111–119. Eurographics Association, Aire-la-Ville (2006)
Tierny, J., Vandeborre, J.P., Daoudi, M.: Topology driven 3d mesh hierarchical segmentation. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications 2007, pp. 215–220. IEEE Computer Society, Washington, DC, USA (2007)
Várady, T., Kós, G., Benko, P.: Reverse engineering regular objects: Simple segmentation and surface fitting procedures. IJSM (International Journal of Shape Modeling), Procs. of CAGD: New Trends and Applications, Crete 4, 127–142 (1997/1998)
Werghi, N., Fisher, R., Ashbrook, A., Robertson, C.: Faithful recovering of quadric surfaces from 3d range data. In: Proceedings 2nd int. Conf. on 3d Digital Imaging and Modeling, pp. 280–289 (1999)
Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh segmentation driven by gaussian curvature. The Visual Computer 21, 659–668 (2005)
Yamauchi, H., Lee, S., Lee, Y., Ohtake, Y., Belyaev, A., Seidel, H.P.: Feature sensitive mesh segmentation with mean shift. In: Proceedings of the International Conference on Shape Modeling and Applications 2005, pp. 238–245. IEEE Computer Society, Washington, DC, USA (2005)
Zatzarinni, R., Tal, A., Shamir, A.: Relief analysis and extraction. ACM Trans. Graph. 28(5), 1–9 (2009)
Zhang, X., Li, G., Xiong, Y., He, F.: 3D mesh segmentation using mean-shifted curvature. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 465–474. Springer, Heidelberg (2008)
Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral surface decomposition with applications. Computers & Graphics 26(5), 733–743 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Digne, J., Morel, JM., Mehdi-Souzani, C., Lartigue, C. (2012). Mesh Segmentation and Model Extraction. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-27413-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27412-1
Online ISBN: 978-3-642-27413-8
eBook Packages: Computer ScienceComputer Science (R0)