Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines

  • Conference paper
Curves and Surfaces (Curves and Surfaces 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6920))

Included in the following conference series:

Abstract

We present a framework for generating a trivariate B-spline parametrization of turbine blades from measurement data generated by optical scanners. This new representation replaces the standard patch-based representation of industrial blade designs. In a first step, the blade surface is represented by a smoothly varying family of B-spline curves. In a second step, the blade is parametrized by a trivariate B-spline volume. The resulting model is suitable for numerical simulation via isogeometric analysis, as well as for a fully automatic structured mesh generation with standard finite elements. We focus on the industrial applicability of the framework, by using standard turbine blade features throughout the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aigner, M., Jüttler, B.: Approximation Flows in Shape Manifolds. In: Chenin, P., Lyche, T., Schumaker, L.L. (eds.) Curve and Surface Design: Avignon 2006, pp. 1–10. Nashboro Press (2007)

    Google Scholar 

  2. Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-V.: Swept Volume Parameterization for Isogeometric Analysis. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 19–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bajaj, C.L., Hoffmann, C.M., Lynch, R.E., Hopcroft, J.E.H.: Tracing surface intersections. Computer Aided Geometric Design 5, 285–307 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boehm, W., Prautzsch, H.: Numerical Methods. A. K. Peters, Wellesley (1993)

    MATH  Google Scholar 

  5. Farin, G., Hansford, D.: Discrete Coons patches. Computer Aided Geometric Design 16, 691–700 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Floater, M.S.: Meshless parameterization and B-spline surface approximation. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 1–18. Springer, Heidelberg (2000)

    Google Scholar 

  7. Goldman, R.: Curvature Formulas for Implicit Curves and Surfaces. Computer Aided Geometric Design 22, 632–658 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gregory-Smith, D.G., Ingramnd, G., Jayaraman, P., Harvey, N.W., Rose, M.G.: Non-axisymmetric turbine end wall profiling. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 215, 721–734 (2001)

    Google Scholar 

  9. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley (1993)

    MATH  Google Scholar 

  10. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jüttler, B.: Least-squares fitting of algebraic spline curves via normal vector estimation. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 263–280. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces. Advances in Computational Mathematics 17, 135–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Y., Wang, W.: A Revisit to Least Squares Orthogonal Distance Fitting of Parametric Curves and Surfaces. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 384–397. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Martin, T., Cohen, E., Kirby, R.M.: Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Computer Aided Geometric Design 26, 648–664 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, X., Aigner, M., Chen, F., Jüttler, B.: Circular spline fitting using an evolution process. J. of Computational and Applied Mathematics 231, 423–433 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taubin, R.: Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 13, 1115–1138 (1991)

    Article  Google Scholar 

  17. Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by squared distance minimization. ACM Trans. Graphics 25, 214–238 (2006)

    Article  Google Scholar 

  18. Xu, G., Bajaj, C.: Regularization of B-spline objects. Computer Aided Geometric Design 28, 38–49 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Großmann, D., Jüttler, B. (2012). Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27413-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27412-1

  • Online ISBN: 978-3-642-27413-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics