Abstract
We present a framework for generating a trivariate B-spline parametrization of turbine blades from measurement data generated by optical scanners. This new representation replaces the standard patch-based representation of industrial blade designs. In a first step, the blade surface is represented by a smoothly varying family of B-spline curves. In a second step, the blade is parametrized by a trivariate B-spline volume. The resulting model is suitable for numerical simulation via isogeometric analysis, as well as for a fully automatic structured mesh generation with standard finite elements. We focus on the industrial applicability of the framework, by using standard turbine blade features throughout the process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aigner, M., Jüttler, B.: Approximation Flows in Shape Manifolds. In: Chenin, P., Lyche, T., Schumaker, L.L. (eds.) Curve and Surface Design: Avignon 2006, pp. 1–10. Nashboro Press (2007)
Aigner, M., Heinrich, C., Jüttler, B., Pilgerstorfer, E., Simeon, B., Vuong, A.-V.: Swept Volume Parameterization for Isogeometric Analysis. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds.) Mathematics of Surfaces XIII. LNCS, vol. 5654, pp. 19–44. Springer, Heidelberg (2009)
Bajaj, C.L., Hoffmann, C.M., Lynch, R.E., Hopcroft, J.E.H.: Tracing surface intersections. Computer Aided Geometric Design 5, 285–307 (1988)
Boehm, W., Prautzsch, H.: Numerical Methods. A. K. Peters, Wellesley (1993)
Farin, G., Hansford, D.: Discrete Coons patches. Computer Aided Geometric Design 16, 691–700 (1999)
Floater, M.S.: Meshless parameterization and B-spline surface approximation. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 1–18. Springer, Heidelberg (2000)
Goldman, R.: Curvature Formulas for Implicit Curves and Surfaces. Computer Aided Geometric Design 22, 632–658 (2005)
Gregory-Smith, D.G., Ingramnd, G., Jayaraman, P., Harvey, N.W., Rose, M.G.: Non-axisymmetric turbine end wall profiling. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 215, 721–734 (2001)
Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley (1993)
Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering 194, 4135–4195 (2005)
Jüttler, B.: Least-squares fitting of algebraic spline curves via normal vector estimation. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 263–280. Springer, Heidelberg (2000)
Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces. Advances in Computational Mathematics 17, 135–152 (2002)
Liu, Y., Wang, W.: A Revisit to Least Squares Orthogonal Distance Fitting of Parametric Curves and Surfaces. In: Chen, F., Jüttler, B. (eds.) GMP 2008. LNCS, vol. 4975, pp. 384–397. Springer, Heidelberg (2008)
Martin, T., Cohen, E., Kirby, R.M.: Volumetric parameterization and trivariate B-spline fitting using harmonic functions. Computer Aided Geometric Design 26, 648–664 (2009)
Song, X., Aigner, M., Chen, F., Jüttler, B.: Circular spline fitting using an evolution process. J. of Computational and Applied Mathematics 231, 423–433 (2009)
Taubin, R.: Estimation of Planar Curves, Surfaces, and Nonplanar Space Curves Defined by Implicit Equations with Applications to Edge and Range Image Segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 13, 1115–1138 (1991)
Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by squared distance minimization. ACM Trans. Graphics 25, 214–238 (2006)
Xu, G., Bajaj, C.: Regularization of B-spline objects. Computer Aided Geometric Design 28, 38–49 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Großmann, D., Jüttler, B. (2012). Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines. In: Boissonnat, JD., et al. Curves and Surfaces. Curves and Surfaces 2010. Lecture Notes in Computer Science, vol 6920. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27413-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-27413-8_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27412-1
Online ISBN: 978-3-642-27413-8
eBook Packages: Computer ScienceComputer Science (R0)