Abstract
This paper presents a new biomimetic approach for sensor placement, clustering and data routing in Wireless Sensor Networks that can be deployed and managed in ubiquitous applications such as: security, business, automation, home and healthcare, precision agriculture, ecosystem monitoring and many more. Since hierarchical clustering can reduce the resource usage in sensor networks, we investigate Immuno-Computing and SVD-based algorithms for sensor clustering, routing and management of sensornet resources. The simulation results show that the proposed approach can improve robustness and extend the life-span of network infrastructures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aickelin, U., Chen, Q.: On Affinity Measures for Artificial Immune System Movie Recommenders. In: Proceedings of the International Conference on Recent Advances in Soft Computing, RASC 2004, Nottingham, UK (2004)
Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering Gene Expression Patterns. Journal of Computational Biology 6(3/4), 281–297 (1999)
Cao, Y., He, C., Wang, J.: A Backoff-Based Energy Efficient Clustering Algorithm for Wireless Sensor Networks. In: Jia, X., Wu, J., He, Y. (eds.) MSN 2005. LNCS, vol. 3794, pp. 907–916. Springer, Heidelberg (2005)
Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-configuring Sensor Networks Topologies. IEEE Trans. on Mobile Computing, Spec. Issue on Mission-Oriented Sensor Networks 3(3) (July-September 2004)
Chaczko, Z.: Towards Epistemic Autonomy in Adaptive Biomimetic Middleware for Cooperative Sensornets. PhD thesis, UTS, Australia (July 2009)
Chaczko, Z., Chiu, C.C., Moses, P.: Cooperative Extended Kohonen Mappings for WSN. In: Conference Proceedings of Computer Aided Systems Theory, Eurocast 2007, Las Palmas, Spain (2009)
de Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman and Hall/CRC, Taylor and Francis (2006)
Dimokas, N., Katsaros, D., Manolopoulos, Y.: Node Clustering in Wireless Sensor Networks by Considering Structural Characteristics of the Network Graph. In: 4th International Conference on Information Technology, ITNG 2007, April 2-4, pp. 122–127 (2007)
Fernandess, Y., Malkhi, D.: K-Clustering in Wireless Ad Hoc Networks. In: Proceedings of 2nd ACM Workshop on Principles of Mobile Computing, Toulouse, France, pp. 31–37 (2002)
Friedman, N., Koller, D.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)
Furuta, T., et al.: A New Cluster Formation Method for Sensor Networks Using Facility Location Theory, Nanzan University, Tech. Rep. 01 (2006), http://www.seto.nanzan-u.ac.jp/msie/nas/techreport/index.html
Hussain, S., et al.: Genetic Algorithm for Energy Efficient Clusters in Wireless Sensor Networks. In: Proc. of the 4th International Conference on Information Technology: New Generations (ITNG 2007), Las Vegas, USA, April 2-4 (2007)
Kang, T., et al.: A Clustering Method for Energy Efficient Routing in Wireless Sensor Networks. In: Proceedings of the 6th WSEAS Int. Conf. on Electronics, Hardware, Wireless and Optical Communications, Corfu Island, Greece, February 16-19 (2007)
Wang, K.:Cluster Validity Analysis Platform, Version 3.5 (2007), http://www.mathworks.com/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chaczko, Z. (2012). WSN Clustering Using IC-SVD Algorithms. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2011. EUROCAST 2011. Lecture Notes in Computer Science, vol 6928. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27579-1_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-27579-1_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27578-4
Online ISBN: 978-3-642-27579-1
eBook Packages: Computer ScienceComputer Science (R0)