Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Local Symmetry and Compositional Verification

  • Conference paper
Verification, Model Checking, and Abstract Interpretation (VMCAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7148))

Abstract

This work considers concurrent programs formed of processes connected by an underlying network. The symmetries of the network may be used to reduce the state space of the program, by grouping together similar global states. This can result in an exponential reduction for highly symmetric networks, but it is much less effective for many networks, such as rings, which have limited global symmetry. We focus instead on the local symmetries in a network and show that they can be used to significantly reduce the complexity of compositional reasoning. Local symmetries are represented by a symmetry groupoid, a generalization of a symmetry group. Certain sub-groupoids induce quotient networks which are equivalent to the original for the purposes of compositional reasoning. We formulate a compositional reasoning principle for safety properties of process networks and define symmetry groupoids and the quotient construction. Moreover, we show how symmetry and local reasoning can be expoited to provide parameterized proofs of correctness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amla, N., Emerson, E.A., Namjoshi, K.S., Trefler, R.J.: Visual Specifications for Modular Reasoning About Asynchronous Systems. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 226–242. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized Verification with Automatically Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Brown, R.: From groups to groupoids: A brief survey. Bull. London Math. Society 19, 113–134 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandy, K., Misra, J.: Proofs of networks of processes. IEEE Transactions on Software Engineering 7(4) (1981)

    Google Scholar 

  5. Cho, H., Hachtel, G.D., Macii, E., Plessier, B., Somenzi, F.: Algorithms for approximate FSM traversal based on state space decomposition. IEEE Trans. on CAD of Integrated Circuits and Systems 15(12), 1465–1478 (1996)

    Article  Google Scholar 

  6. Clarke, E.M., Filkorn, T., Jha, S.: Exploiting Symmetry in Temporal Logic Model Checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)

    Google Scholar 

  7. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Cohen, A., Namjoshi, K.S.: Local Proofs for Global Safety Properties. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 55–67. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Cohen, A., Namjoshi, K.S.: Local Proofs for Linear-Time Properties of Concurrent Programs. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 149–161. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Cohen, A., Namjoshi, K.S.: Local proofs for global safety properties. Formal Methods in System Design 34(2), 104–125 (2009)

    Article  MATH  Google Scholar 

  11. de Roever, W.-P., de Boer, F., Hannemann, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncompositional Proof Methods. Cambridge University Press (2001)

    Google Scholar 

  12. Dijkstra, E., Scholten, C.: Predicate Calculus and Program Semantics. Springer, Heidelberg (1990)

    Book  MATH  Google Scholar 

  13. Emerson, E., Namjoshi, K.: Reasoning about rings. In: ACM Symposium on Principles of Programming Languages (1995)

    Google Scholar 

  14. Emerson, E., Sistla, A.: Symmetry and Model Checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697. Springer, Heidelberg (1993)

    Google Scholar 

  15. Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Golubitsky, M., Stewart, I.: Nonlinear dynamics of networks: the groupoid formalism. Bull. Amer. Math. Soc. 43, 305–364 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gupta, A., Popeea, C., Rybalchenko, A.: Predicate abstraction and refinement for verifying multi-threaded programs. In: POPL. ACM (2011)

    Google Scholar 

  18. Ip, C.N., Dill, D.: Better verification through symmetry. Formal Methods in System Design 9(1/2) (1996)

    Google Scholar 

  19. Jones, C.: Tentative steps toward a development method for interfering programs. ACM Trans. on Programming Languages and Systems, TOPLAS (1983)

    Google Scholar 

  20. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Software Eng. 3(2) (1977)

    Google Scholar 

  21. Lamport, L., Schneider, F.B.: The “Hoare Logic” of CSP, and All That. ACM Trans. Program. Lang. Syst. 6(2), 281–296 (1984)

    Article  MATH  Google Scholar 

  22. Moon, I.-H., Kukula, J.H., Shiple, T.R., Somenzi, F.: Least fixpoint approximations for reachability analysis. In: ICCAD, pp. 41–44 (1999)

    Google Scholar 

  23. Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized Systems. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Namjoshi, K.S., Trefler, R.J.: On the completeness of compositional reasoning methods. ACM Trans. Comput. Logic 11, 16:1–16:22 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Owicki, S.S., Gries, D.: Verifying properties of parallel programs: An axiomatic approach. Commun. ACM 19(5), 279–285 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weinstein, A.: Groupoids: Unifying internal and external symmetry-a tour through some examples. Notices of the AMS (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Namjoshi, K.S., Trefler, R.J. (2012). Local Symmetry and Compositional Verification. In: Kuncak, V., Rybalchenko, A. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2012. Lecture Notes in Computer Science, vol 7148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27940-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27940-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27939-3

  • Online ISBN: 978-3-642-27940-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics